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Abstract. The quasi-biennial oscillation (QBO) is one of the most predictable

modes of large-scale internal variability in the Earth’s atmosphere. We explore the

effect of coupling a 1D model of the QBO winds to linearised equations of ozone

radiation and photochemistry. We give a detailed description of the model and

highlight the importance of incorporating the ozone feedback to obtain realistic

results. In particular, it is found that including the ozone feedback smoothens the

asymmetry between westerly and easterly winds, increases the zonal mean temperature,

strengthens the ozone phase shift in the upper stratosphere, and drives ozone and

upwelling perturbations in the lower stratosphere. Finally, we showcase how the ozone

feedback mechanisms can stabilise the QBO in the face of an anthropogenic increase in

carbon dioxide concentrations by reducing the percentual change in the QBO period

as carbon dioxide levels rise.
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1 Introduction

The quasi-biennial oscillation (QBO) [1, 2] consists of alternating layers of easterly

and westerly1 wind regimes that descend through the tropical stratosphere from near

the stratopause down to the tropopause at approximately 1km per month. It has a

variable period averaging to 28 months (about two years), hence its name.

Other than the fluctuations associated with seasonal cycles and diurnal changes,

the QBO is one of the most predictable modes of large-scale internal variability2 in

the Earth’s atmosphere. Moreover, although the QBO is a tropical phenomenon, it

influences atmospheric processes all over the globe [2] such as the stratospheric polar

vortex, subtropical jets, semi-annual oscillations in the stratosphere and mesosphere,

etc. Therefore, simulating the QBO and its teleconnections accurately is crucial to

making better climate and weather forecasts.

For this purpose, an understanding of the influence of the QBO not only on zonal

wind but also on temperature and the distribution of trace species is essential. The

QBO changes in stratospheric circulation affect temperature patterns by creating

anomalies to mantain thermal wind balance. At the same time, the QBO influences

the distribution of stratospheric trace gases and aerosols. In particular, stratospheric

ozone exhibits a strong QBO signal. Since the ozone mixing ratio exhibits a vertical

gradient, the QBO-induced vertical motion drives the transport of ozone due to vertical

advection. At the same time, since ozone is a greenhouse gas — that is, it absorbs

radiation — changes in its concentration feedback onto the temperature and, therefore,

the QBO’s period and amplitude.

Recently, there have been unforeseen disruptions of the QBO [3]. While the exact

causes are not yet fully understood, these disturbances are believed to be partially due

to the ongoing trend of warming climate. Further, given that ozone is a greenhouse

gas, any changes in its distribution due to QBO disruptions could potentially worsen

the climate situation. This project aims to explore the influence of ozone feedback on

the dynamics of the QBO amidst the backdrop of climate change.

1Easterlies and westerlies refer to winds blowing from the east and west respectively. These terms
are equivalent to westward and eastward winds respectively.

2Variability refers to aspects of the climate deviating from their long-term averages.
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Symbol Description Value Reference

κ Vertical diffusion 0.30 m2 s−1 [4]
F Wave momentum flux 1.60× 10−2 m2 s−2 [4]
N Buoyancy frequency 2.16× 10−2 s−1 [4]
µ Thermal dissipation rate 1.00× 10−6 s−1 [4]
α Damping coefficient eq. (10) [4]
k Wavenumber 2π/(40× 106) m−1 [4]
c Phase speed 30.0 m s−1 [4]
H Density scale height 7.00× 103 m [4, 5]
Ω Earth rotation rate 7.27× 10−5 ms−1 —
a Earth radius 6.37× 106 m —
β Rossby parameter 2Ω/a —
L QBO’s meridional scale 1.00× 106 m [5]
R Dry air gas constant 287 m2 s−2K−1 —
h Newtonian cooling coefficient eq. (22) [6]∗

γO Ozone photochemical coefficient 1.80× 10−7 s−1 [5]
γT Temperature photochemical coefficient −9.00× 10−13 m−1 s ppv [5]
sO Ozone heating coefficient 8.32× 10−2 ms−3 ppv−1 [5]
sC Aerosol heating coefficient -1.00× 10−7 ms−3 ppv−1 —

Table 1: Numerical values of the model’s parameters. The asterisk means that the
coefficient was modified from what was given by the source. In this case, it was
reduced by two orders of magnitude as discussed in section 2.2.

2 Model Description

In this section, we present a one-dimensional model in which the average zonal-

mean wind u, temperature T and ozone mixing ratio χO are only functions of height

z ∈ [zl, zt] and time t ≥ 0. An overview of all the parameters used is given in table 1.

2.1. Zonal Wind

The QBO [1, 2] is an oscillating mean flow driven by the two-way feedback interaction

between the background stratospheric winds and vertically propagating tropospheric

equatorial waves. Its basic mechanism [1, 2], illustrated in fig. 1, works as follows.

Consider a background stratospheric flow u(z) — that is, the wind in the absence of

waves — in the latitudinal direction (x-direction) which varies with height (z-direction).

This flow is now perturbed by waves with horizontal phase speeds cn propagating

vertically with certain vertical group velocities. On one hand, background flow alters
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Fig. 1: Evolution of the zonal-mean wind u (black line) forced by two upward
propagating waves with the same amplitude and equal but opposite horizontal phase
speeds ±c. The horizontal and vertical axes are horizontal velocity and height z
respectively. The wavy lines show the vertical penetration of westward (blue) and
eastward (red) waves, with diminishing amplitude signifying dissipation as they
traverse the stratosphere (they do not represent changes in phase speed). Black arrows
represent momentum deposition when the u approaches ±c. Adapted from [1].

waves’ momentum fluxes for, as they propagate vertically through the stratosphere,

their vertical wavelength and vertical group velocity decrease as u(z) approaches cn

with altitude. Wave dissipation – due to radiative damping, wave breaking, etc. –

increases under these conditions and is maximised near critical layers where |u(z)− cn|
is zero. At the same time, the waves’ momentum fluxes alter the background flow.

Dissipation leads to lateral momentum deposition by the waves that locally accelerate

u towards their phase speeds cn. This acceleration is maximised as |u− cn| reaches
zero and the waves with phase speed cn are completely absorbed.

Hence, each wave undergoes the following cycle creating a pattern of descending

winds: (a) the wave propagates until it reaches its critical layer, where it is fully

absorbed; (b) acceleration of u(z) by this wave predominantly occurs below this point,

so u(z) reaches cn slightly earlier and the wind pattern descends; (c) the critical layer

is reached at lower heights, so the wave is fully absorbed earlier; (d) the cycle repeats

until the wave is fully absorbed at the lower boundary; (e) since this wave is not able

to propagate through the stratosphere, the mean flow is accelerated by waves with

other phase speeds, causing u(z) to move away from cn at the lower boundary; (f) the

wave can now propagate to the top, marking the restart of the cycle.
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While in reality the QBO is driven by a broad spectrum of waves, its fundamental

behaviour is adequately captured by agglomerating all of them in two as shown in fig. 1.

This is the approach we will take for the remainder of the project. These waves are

generated by convection processes in the tropics and have sizes ranging from mesoscale

(small-scale gravity waves) to planetary scales (global-scale Kelvin and Rossby-gravity

waves). In this project, we will restrict ourselves to the latter, assuming they dominate

wind perturbations like previously done in [4, 6, 7, 8]. In the following subsections, we

will explore how this mechanism can be described mathematically.

2.1.1 Simple QBO Model

Plumb Model. Following the one-dimensional QBO model described in [7], the

evolution of u(z, t) obeys the equation

∂u(z, t)

∂t
= −

∑
n

∂Fn(z, t)

∂z
+ κ

∂2u(z, t)

∂z2
. (1)

The term on the left-hand side represents the rate of change of zonal-mean wind.

The terms on the right-hand side represent wave momentum deposition and diffusion

respectively. Here, κ is the vertical diffusion constant and Fn is the horizontal

momentum flux associated with the n-th wave given by

Fn(z, t) = Fn(zl) exp

(
−
∫ z

zl

Nµ

kn(u(z′, t)− cn)
dz′
)
. (2)

Fn(zl) represents momentum deposition at the lower boundary, and the exponential

term characterizes the attenuation of the wave as it traverses the stratosphere. The

damping of the n-th wave is characterised by the thermal dissipation rate µ, the

buoyancy frequency N , its wavenumber kn, and the difference between its phase speed

cn and u. Hence, as we approach the critical layer (|u − cn| → 0) the wave flux

drops to zero meaning that the wave has been absorbed by the mean flow and all

its momentum deposited. Here, N−1 measures the response time of stratification to

perturbations. A fast response to perturbations (bigger values of N) leads to a more

stable stratosphere where waves are more effectively damped. Equation (2) can be

derived from the continuity, Navier-Stokes, and buoyancy equations by performing

a Boussinesq approximation of the stratospheric flow and taking into account small
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perturbations of velocity caused by waves. For an outline of this derivation, please

refer to appendix A.

Non-dimensionalisation. Equations (1) and (2) may be non-dimensionalised by

defining

u = [c]û, c = [c]ĉ, kn = [k]k̂n, N = [N ]N̂ , µ = [µ]µ̂, Fn(zl) = [F ]F̂n(zl),

(3)

α =
Nµ

[N ][µ]
, Λ =

κ[N ][µ]

[k][c][F ]
, (4)

where the characteristic scales are denoted by brackets and the non-dimensional

constants by hats. If we then use the non-dimensional coordinates

η =
[N ][µ]

[k][c]2
(z − 17km), ξ =

[N ][µ][F ]

[k][c]3
t, (5)

we arrive at the non-dimensional equations

∂u(η, ξ)

∂ξ
= −

∑
n

∂Fn(η)

∂η
+ Λ

∂2u(η, ξ)

∂η2
, (6)

Fn(η) = Fn(ηl) exp

(
−
∫ η

ηl

gn(η
′)dη′

)
, gn(η) =

α

kn(u(η, ξ)− cn)2
, (7)

where the hats have been dropped and gn is referred to as the attenuation rate and α

as the damping coefficient.

2.1.2 Extended QBO Model

Density. The approximation of the atmosphere as a Boussinesq fluid — that is,

density is taken to be constant except when it gives rise to buoyancy forces — leads

to the stratification of the mean flow being described solely in terms of N . This is

not strictly valid as stratificiation significantly influences the vertical structure of

momentum dissipation. Following [4, 6, 8], we can locally assume constant density

while allowing it to vary with height giving

∂u(z, t)

∂t
= −ρ(zl)

ρ(z)

∑
n

∂Fn(z, t)

∂z
+ κ

∂2u(z, t)

∂z2
, (8)
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leaving Fn and gn unchanged. Like [4] but unlike [8], we do not absorb ρ(zl) into Fn(zl).

Since temperature variations are not too big in the stratosphere, we can assume it is

isothermal giving an exponential mean density profile

ρ(z) = ρ(zl) exp

(
−z − zl

H

)
, (9)

where H is the density scale height and the ρ(zl)’s in the fraction preceding of the

forcing term of eq. (8) cancel. Note that this assumption does not prevent us from

considering small temperature perturbations in the next subsection.

Damping coefficient. A constant damping coefficient is also not always a good

approximation, and we can improve it by setting, like [4],

α(z) =

0.55 + 0.56
(
z−17km
6.5km

)
, 17km ≤ z ≤ 30km,

1.65, z > 30km,
(10)

which can be written in terms of the non-dimensional variable η using eq. (5).

Waves. We can further improve the model by considering a more realistic forcing

composed of an eastward Kelvin wave (subscript K) and a westward Rossby-gravity

wave (subscript RG) by altering the rates of decay.

To do so we define the Coriolis frequency f = 2Ω sinφ and the Rossby parameter

β =
1

a

∂f

∂φ
=

2Ω

a
= [k]2[c]β̂, (11)

where φ is latitude, Ω is the angular speed of the Earth’s rotation, a is Earth’s radius,

and we used φ = 0 since we are considering the QBO at the tropics. Now, following

[8], we modify the attenuation rates to

gK(η, ξ) =
α(η)

kK(u(η, ξ)− cK)2
, (12)

gRG(η, ξ) =
α(η)

kRG(u(η, ξ)− cRG)2

[
β

k2RG(u− cRG)
− 1

]
, (13)

where we dropped the hats and left out the temperature dependence shown in [8]

to improve the stability of the numerical implementation. Conventionally, westerly
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(eastward) velocities are positive and easterly (westward) velocities are negative, so

cK > 0 and cRG < 0. Moreover, Rossby-gravity waves’ horizontal wavelengths are

smaller those of Kelvin waves, so we set kRG = 3kK .

Upwelling. There is a global mass circulation pattern called the Brewer-Dobson

circulation [9] in which air rises into the stratosphere at the tropics and moves

polewards as it descends until it reaches middle-high latitudes. Following [4, 6, 10], we

can expand the model by taking into account the effect of advection by the tropical

branch of the Brewer-Dobson circulation through the inclusion of an upwelling term,

∂u(z, t)

∂t
+ w

∂u(z, t)

∂z
= − exp

(
z − zl
H

)∑
n

∂Fn(z, t)

∂z
+ κ

∂2u(z, t)

∂z2
. (14)

Here, w is the strength of upwelling. In the next subsection, we will explore a possible

expression for this variable in terms of temperature and gas mixing ratios.

Non-dimensionalisation. Equation (14) can be non-dimensionalised by defining

ϵ =
1

H

[N ][µ]

[k][c]2
, w =

[F ]

[c]
ŵ, (15)

which leads to

∂u(η, ξ)

∂ξ
+ w(η, ξ)

∂u(η, ξ)

∂η
= − exp [ϵ(η − ηl)]

∑
n

∂Fn(η, ξ)

∂η
+ Λ

∂2u(η, ξ)

∂η2
, (16)

where the hats have been dropped. Note that in the limit where w, ϵ→ 0 we recover

the Plumb model.

Summary. The non-dimensional extended QBO model is given by the zonal-mean

wind evolution eq. (16), the wave momentum flux eq. (7), the damping coefficient

eq. (10), the attenuation rates eqs. (12) and (13), and the upwelling equation that is yet

to be defined. Once we get the non-dimensional solution we can get the dimensional

height, time, zonal-mean wind, and upwelling from eqs. (3), (5) and (15).
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2.2. Temperature and Ozone

In this section, we will explore how the QBO perturbations in zonal-mean wind lead

to perturbations in zonal-mean temperature and ozone mixing ratios. Further, we will

examine how these perturbations contribute to feedback mechanisms within the QBO

by influencing upwelling.

Temperature: The QBO exhibits a clear signature in temperature because it must

be in thermal wind balance with the zonal winds. Thermal wind balance [11] describes

the variation in wind patterns with height due to a horizontal temperature gradient,

or vice-versa, due to geostrophic and hydrostatic balance. Geostrophic balance refers

to the horizontal pressure gradient force being equilibrated by the Coriolis force. As

wind moves from high to low-pressure (p) areas, the Coriolis force (fc) deflects it to the

right in the Northern and to the left in the Southern Hemisphere. This is described by

fcu = −1

ρ

∂p

∂y
. (17)

Hydrostatic balance refers to the vertical pressure gradient force being equilibrated by

gravity. This can be described by

ρg = −∂p
∂z
. (18)

Equations (17) and (18) can be equated after differentiating them with respect

to z and y respectively. A relationship between temperature and u can be found

assuming an equation of state like the ideal gas law. Doing so and integrating over the

tropical latitudes in log-pressure coordinates as demonstrated in [12], the zonal-mean

temperature deviation from the average is found to be

T (z, t) = −L
2ΩH

Ra

∂u(z, t)

∂z
, (19)

where R is the gas constant for dry air and L is the meridional scale of the QBO.

Hence, we expect cold anomalies near the tropopause associated with westerly phases

— that is, easterly winds (negative u) in the lower atmosphere and westerly winds

(positive u) in the mid-atmosphere, so ∂u/∂z > 0 — and the opposite for easterly

phases.
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Ozone: Following [5, 6, 12], the continuity equation of ozone can be written as

∂χO(z, t)

∂t
+ w(z, t)

∂χO(z, t)

∂z
= γOχO(z, t) + γT

RT (z, t)

H
. (20)

The terms on the left-hand side represent the rate of change in the ozone mixing

ratio and upwelling. The terms on the right-hand side represent the damping of

ozone perturbations through photochemical reactions. The photochemistry of ozone

is linearised with respect to the ozone mixing ratio and temperature. Here, χO is the

ozone mixing ratio and γn the photochemical coefficients. Given that γT < 0 (table 1),

warm QBO temperature anomalies lead to a reduction in ozone concentrations, while

cold QBO anomalies result in an increase.

Upwelling: Again following [5, 6, 12], we consider the impact of temperature and

ozone anomalies in QBO winds through changes in the upwelling term. Vertical motion

is described by balancing diabatic heating (or cooling) with adiabatic expansion (or

compression) as follows,

w(z, t)N2 = −h(z)RT
H

+ sOχO(z, t) + sCχC(z, t). (21)

The term on the left-hand side represents adiabatic expansion, wherein the warming

of air induces upwelling, while the cooling of air results in sinking. The terms on

the right-hand side represent diabatic heating. This includes infrared cooling by

temperature anomalies and heating due to the absorption of solar radiation by ozone

and carbon dioxide perturbations, respectively. Here, χC is the carbon dioxide mixing

ratio, sn the heating coefficients, and h the Newtonian cooling coefficient

h(z) =


(
1 + 2

3
z−17km
6.5km

)
× 5.4× 10−9s−1, 17km ≤ z ≤ 30km,

1.56× 10−8s−1, z > 30km.
(22)

This coefficient was taken from [6] and reduced by two orders of magnitude because,

otherwise, upwelling was too strong for the QBO to form. This problem could be

arising because we are not taking into account the temperature dependence of the

attenuation rates in eqs. (12) and (13).
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Non-dimensionalisation. Equations (19) to (21) can be non-dimentionalised

setting

T =
L2ΩH[N ][µ]

Ra[k][c]
T̂ , χn = [χ]χ̂n, (23)

ΓO =
γO[k][c]

3

[µ][F ][N ]
, ΓT =

γTL
2Ω[c]2

a[F ][χ]
, Ξ =

hL2Ω[µ]

a[k][F ][N ]
, Sn =

sn[c][χ]

[F ][N ]2
, (24)

which leads to the non-dimensionalised

T (η, ξ) = −∂u(η, ξ)
∂η

, (25)

∂χO(η, ξ)

∂ξ
+ w(η, ξ)

∂χO(η, ξ)

∂η
= ΓOχO(η, ξ) + ΓTT (η, ξ), (26)

w(η, ξ) = −Ξ(η)T (η, ξ) + SOχO(η, ξ) + SCχC(η, ξ). (27)

Hence, we can use eqs. (25) to (27) to update temperature, ozone concentration

and upwelling strength respectively. Once we get the non-dimensional solution we can

get the dimensional temperature and mixing ratios from eq. (23).

Summary. The complete QBO model is given by the zonal-mean wind evolution

eq. (16), the wave momentum flux eq. (7), the damping coefficient eq. (10), the

attenuation rates eqs. (12) and (13), the temperature eq. (25), the ozone continuity

eq. (26), and the upwelling eq. (27). Once we get the non-dimensional solution we

can get the dimensional height, time, zonal-mean wind, upwelling, temperature, and

mixing ratios from eqs. (3), (5), (15) and (23). This system of equations can be

discretised and integrated numerically as we will see in the following section.

3 Numerical Implementation

In this section, we describe the semi-implicit finite difference scheme used to solve the

extended QBO model with temperature and ozone contributions. To integrate the

simple QBO model, we follow the same scheme setting w and ϵ to zero.

We define a domain covering 5000 days and roughly the extension of the stratosphere

from the tropopause at 17km to near the stratopause at 43km from the surface.

{(z, t) ∈ ([17, 43]km× [0, 5000]days)} , (28)
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This domain is then non-dimentionalised and discretised as follows

{(ηj, ξn) := (j∆η, n∆ξ) ∈ ([0, 4]× [0, 44]) : j = 0, 1, ..., J and n = 0, 1, ..., N} , (29)

where J = 100 and N = 105. Hence, the stepsize is ∆η = 0.04 (0.26 km) and timestep

is ∆ξ = 4.4× 10−4 (0.05 days).

Now, we integrate over time using a semi-implicit finite differences scheme where

the non-linearities are calculated explicitly. The basic procedure at timestep n+ 1,

given the previous state at n is as follows. Firstly, we calculate the momentum flux

term of eq. (16) explicitly,

G(ηj, ξn+1) = − exp (ϵηj)
∑
i

∂Fi(ηj, ξn)

∂η
. (30)

Care must be taken with this term as it tends to infinity as u → ci. Hence, we

impose the condition that G(ηj, ξn+1) < 100 and set it to 100 if this limit is exceeded.

Secondly, we update the approximation U
n+1

j of u(ηj, ξn+1) using an implicit Euler

scheme for eq. (16).

U
n+1

j − U
n

j

∆ξ
+W n

j

U
n+1

j − U
n+1

j−1

∆η
= G(ηj, ξn+1) + Λ

U
n+1

j+1 − 2U
n+1

j + U
n+1

j−1

(∆η)2
, (31)

for n = 0, 1, ...N − 1 and j = 1, 2, ..., J − 1 with

U
n+1

0 = 0, n = 0, 1, ...N − 1, (32)

U
n+1

J−2 − 4U
n+1

J−1 + 3U
n+1

J

2∆η
= 0, n = 0, 1, ...N − 1, (33)

U
0

j = 0.5 sin

(
πj∆η

4

)
, j = 0, 1, ...J, (34)

where eqs. (32) and (33) correspond to setting Dirichlet (u(0, ξ) = 0) and Neumann

(∂zu(4, ξ) = 0) boundary conditions respectively and eq. (34) corresponds to setting

initial condition u(η, 0) = 0.5 sin(πη/4). Thirdly, we update the approximation T̃
n+1

j
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of T (ηj, ξn+1) evaluating eq. (25) using finite differences.

T̃
n+1

j = −
U

n+1

j+1 − U
n+1

j−1

2∆η
, j = 1, 2, ..., J − 1, (35)

T̃
n+1

0 =
−3U

n+1

0 + 4U
n+1

1 − 1U
n+1

2

2∆η
, T̃

n+1

J =
U

n+1

J−2 − 4U
n+1

J−1 + 3U
n+1

J

2∆η
(36)

This doesn’t require any boundary conditions. Fourthly, we update approximation

(XO)
n+1
j of χ0(ηj, ξn+1) using an upwind implicit scheme for eq. (26). Extra care must

be taken when building this scheme as it will change depending on the sign of the

upwelling term.

(XO)
n+1
j − (XO)

n
j

∆ξ
+ [W n

j ]
+
(XO)

n+1
j − (XO)

n+1
j−1

∆η
(37)

+ [W n
j ]

− (XO)
n+1
j+1 − (XO)

n+1
j

∆η
= ΓO(XO)

n+1
j + ΓT T̃

n+1

j ,

for n = 0, 1, ..., N − 1 and j = 1, 2, ...J − 1. This is also the case for the boundary

conditions but not for the initial condition.

X
n+1

0 = 0, n = 0, 1, ...N − 1, if W n
0 > 0, (38)

Xn+1
J−2 − 4Xn+1

J−1 + 3Xn+1
J

2∆η
= 0, n = 0, 1, ...N − 1, if W n

J < 0, (39)

X0
j = 0.01 sin

(
πj∆η

2

)
, j = 0, 1, ...J, (40)

where [·]± refers to the positive and negative parts of the term inside the brackets.

Again, eqs. (38) and (39) set (if needed) Dirichlet and Neumann boundary conditions

at the bottom and at the top respectively and eq. (40) corresponds to setting initial

condition χ0(η, 0) = 0.25 cos(πη/4). Finally, we update the approximation W n+1
j of

w(ηj, ξn+1) summing up the terms in eq. (27).

W n+1
j = −Ξ(ηj)T̃

n+1

j + S0(XO)
n+1
j + SCχC(ηj), (41)

for n = 0, 1, ...N − 1 and j = 0, ..., J .
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Fig. 2: Time-height sections of the QBO component of the zonal-mean wind (m/s)
calculated integrating eqs. (6) and (7). The period was found to be 28.42 months.

4 Results

In this section, we present the results of numerically integrating the QBO model. The

numerical values of the parameters used are given in table 1. Throughout this section,

the period of the QBO was found by calculating the auto-correlation function of the

zonal-mean wind at z = 24km and estimating the average distance between its peaks.

4.1. QBO Mechanism

In this subsection, we will explore the differences between the simple and the extended

QBO model. For simplicity and better understanding, we will drop the upwelling

terms until the next section.

Simple QBO model. The result of numerically integrating the simple QBO model

is given in fig. 2. It clearly captures the basic characteristics of the QBO with

descending patterns of westerly and easterly winds of up to 30m s−1 and a period of

around 28 months. The westerly and easterly phases are completely symmetric. Note

that it takes some days for the influence of the initial conditions to disappear and the

QBO phases to become indistinguishable from the ones before or after (visibly around

one to two cycles).

Extended QBO model. The result of numerically integrating the extended QBO

model without upwelling (h = 0, sO = 0, sC = 0) is given in fig. 3. It exhibits zonal

wind oscillations similar to fig. 2, but with a longer period of 30 months, sharper

transitions between easterly and westerly winds, and an asymmetry with stronger

easterlies and faster westerlies. The influence of the boundary conditions lasts around

three cycles.
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Fig. 3: Time-height sections of the QBO zonal-mean wind (m/s), temperature (K)
and ozone mixing ratio (ppmv) calculated integrating eqs. (16), (25) and (26) with
w = 0 (no upwelling). The period was found to be 29.93 months and the average
perturbations were −0.75 ± 10.08 m/s, 0.012 ± 1.850 K, −0.0027 ± 0.3131 ppmv
respectively.

4.2. Ozone

In this subsection, we will explore through a series of experiments the effect of the

ozone feedback on the QBO dynamics. For this purpose, we will take upwelling into

consideration, but we will keep sC = 0 so CO2 perturbations do not play a role.

Full QBO. Figure 4 runs the full QBO simulation. The magnitudes of oscillations

in the zonal-mean wind, temperature, and ozone mixing ratio are within what was

expected from observations [5, 12, 13] with a slightly high period of 33 months. Again,

it takes three cycles for the influence of the boundary conditions to disappear. It also

exhibits a phase shift in ozone at 30 km.

No infrared cooling or radiation absorption. Figure 3 does not take upwelling

into account. That is, the effect of the infrared cooling of temperature anomalies

(h = 0) and radiation absorption by ozone anomalies (sO = 0) are not present. The

percentage change of the average perturbations compared to fig. 4 are: 8.8% decrease

in period, 807% decrease in zonal wind, 74% decrease in temperature, 120% decrease

in ozone. In particular, the wind asymmetry strengthens (westerly phases weaken,

easterly phases propagate slower) and the phase shift in ozone at the upper atmosphere

weakens.
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Fig. 4: Time-height sections of the QBO zonal-mean wind (m/s), temperature
(K), ozone mixing ratio (ppmv) and upwelling (m/s) calculated integrating eqs. (16)
and (25) to (27) with sC = 0 (full simulation). The period of this QBO was found to
be 32.81 months and the average perturbations were 0.11± 9.88 m/s, 0.046± 1.942 K,
0.011± 0.228 ppmv, (0.22± 4.20)× 10−5 m/s respectively.

No radiation absorption. Figure 5 does not take the ozone feedback into account.

That is, the effect of radiation absorption by ozone anomalies (sO = 0) is not present.

The percentage change of the average perturbations compared to fig. 4 are: 8.8%

decrease in period, 800% decrease in zonal wind, 72% decrease in temperature,

120% decrease in ozone, 105% decrease in upwelling. Further, the wind asymmetry

strengthens and the ozone phase shift in the upper atmosphere weakens. The opposite

happens when compared with fig. 3. The zonal wind behaviour at the highest 10 km

is very similar to fig. 4. Note that there are some hints of numerical instability in the

upwelling graph with unnatural sharp edges.

No infrared cooling. Figure 6 does not take thermal wind balance into account.

That is, the effect of infrared cooling by temperature anomalies (h = 0) is not present.

The percentage change of the average perturbations compared to fig. 4 are: 1.1%

decrease in period, 69% decrease in zonal wind, 0.49% decrease in temperature, 1.7%

increase in ozone, 9.1% decrease in upwelling. Further, compared to both figs. 3 and 4,

the wind asymmetry weakens and the phase shift in ozone at the upper atmosphere

strengthens. The behaviour at the lower stratosphere is very similar to fig. 4.
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Fig. 5: Time-height sections of the QBO component of the zonal-mean wind (m/s),
temperature (K), ozone mixing ratio (ppmv) and upwelling (m/s) calculated integrating
eqs. (16) and (25) to (27) with sO = 0, sC = 0 (no radiation absorption). The period
was found to be 29.91 months and the average perturbations were −0.74± 10.08 m/s,
0.013± 1.852 K, −0.0027± 0.3071 ppmv, (−0.10± 1.04)× 10−6 m/s respectively.

Fig. 6: Time-height sections of the QBO component of the zonal-mean wind (m/s),
temperature (K), ozone mixing ratio (ppmv) and upwelling (m/s) calculated integrating
eqs. (16) and (25) to (27) with h = 0, sC = 0 (no infrared cooling). The period was
found to be 32.45 months and the average perturbations were 0.032 ± 9.854 m/s,
0.045± 1.938 K, 0.011± 0.227 ppmv, (0.20± 4.10)× 10−5 m/s respectively.
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Fig. 7: Plot of the percentual change in QBO period with increasing CO2 mixing
ratio for a model with (red) and without (blue) ozone feedback.

4.3. Carbon Dioxide

In this subsection, we investigate the impact of rising concentrations of stratospheric

CO2 on QBO dynamics. To do so, we conduct simulations with (sO ≠ 0) and without

(sO = 0) ozone feedback, using varying levels of CO2. We move from the current value

of 345 ppmv to twice this quantity, 690 ppmv. Since CO2 cools the stratosphere, we

set its heating coefficient to sC = −1× 10−7, which is of the same order of magnitude

as the aerosol heating coefficient used in [6]. We evaluate the change in the QBO

dynamics by comparing the periods obtained with and without ozone feedback with

the ones found for figs. 4 and 5 respectively. The results are presented in fig. 7. Clearly,

the ozone feedback slows down the change in the QBO period.

5 Discussion

5.1. QBO Mechanism

Figure 2 illustrates how the basic characteristics of the QBO can be depicted using

a fairly simple model. Figure 3 show how the asymmetry in QBO winds seen in

observations [13] can be implemented in the model by considering different attenuation

rates for easterly and westerly waves. Moreover, it seems that the extended model is

substantially more dependent on the initial conditions. This dependence is partially

why there is a slight increase in the period to 30 months, and would be reduced if the

simulation ran for longer. Therefore, it would be pertinent to reproduce these results

by running longer simulations that minimise the impact of initial conditions in future

studies. This is also applicable to the findings discussed in the following subsections.
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5.2. Ozone

Figures 3 to 6 illustrate the effect of radiation absorption (ozone feedback) and infrared

cooling on QBO dynamics.

Firstly, with respect to zonal-mean wind perturbations, we can measure the level of

asymmetry between easterly and westerly winds visually or by looking at the average

zonal-mean wind (less asymmetry the closest it is to zero). Doing so, we see that this

asymmetry is maximised when only radiation absorption is taken into account (fig. 6)

and minimised when it is not present (figs. 3 and 5). Therefore, in agreement with [6],

the ozone feedback smoothens the wind asymmetry making westerly phases propagate

slower and weakening easterly phases.

As expected, the inclusion of radiation absorption leads to a rise in temperature,

as illustrated in fig. 4 compared to fig. 5. Conversely, one would expect a decrease in

temperature when considering infrared cooling, as shown by the comparison between

fig. 4 and fig. 6. However, a subtle increase is observed instead. This anomaly is likely

attributed to the fact that an identical number of oscillations were not precisely taken

into account in the average and having had reduced h by two orders of magnitude. This

reduction in h was necessary to prevent the upwelling from becoming too strong for

the QBO to form. A possible reason for this could be our omission of the temperature

dependence of the attenuation rates in eqs. (12) and (13). Hence, incorporating this

temperature dependence could be a valuable area of focus for future research.

Moreover, it appears that zonal-mean ozone and upwelling perturbations are

predominantly driven by radiation absorption, particularly in the lower stratosphere.

This is evident both visually (fig. 4 resembles fig. 6) and looking at the percentage

change between the average ozone and upwelling perturbations in figs. 5 and 6 with

respect to fig. 4. This behaviour aligns with the findings of [12], but it might be

exaggerated by our choice of h, which was reduced by two orders of magnitude. Lastly,

it’s worth noting that the ozone phase shift at 30 km seen in observations [12] is

amplified by radiation absorption, as seen when comparing figs. 4 and 6.

The numerical instability observed in fig. 5 raises concerns about the reliability of

the model’s predictions. Hence, developing a fully-implicit scheme would be of great

interest. This would also allow us to take into account the temperature dependence of

the attenuation rates as it makes the scheme unstable at the moment.
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5.3. Carbon Dioxide

Figure 7 suggests that the ozone feedback mechanism plays a crucial role in stabilising

the time evolution of the QBO in the face of increasing levels of stratospheric carbon

dioxide. This is in alignment with the results presented in [6] where a similar effect

was found in the face of perturbations by volcanic aerosols. Note, however, that the

the carbon heating coefficient used (sC = −1× 10−7) is just an estimation, so these

results are preliminary. Specifically, the percentages shown could vary significantly,

but the trends with and without ozone feedback are expected to be of a similar form.

If we want to obtain more accurate results, this coefficient must be derived from real

data.

6 Conclusion

We presented a one-dimensional model of the Quasi-Biennial Oscillation (QBO) with

linearised equations of ozone radiation and photochemistry to study the effect of the

ozone feedback on the dynamics of the QBO.

We demonstrated how the basic characteristics of the QBO can be replicated using

the simple model and how it can be extended to exhibit the observed asymmetries

between westerly and easterly winds using the extended model.

We then moved on to explore the effect of coupling the QBO mechanism to

linearised equations of ozone radiation and photochemistry. Our analysis revealed that

adding this ozone feedback smoothens the asymmetry between westerly and easterly

winds, increases the mean zonal temperature, strengthens the ozone phase shift in

the upper stratosphere and drives ozone and upwelling perturbations in the lower

stratosphere.

Finally, we showed that the ozone feedback mechanisms stabilise the QBO in

the face of increasing stratospheric carbon dioxide concentrations by reducing the

percentual change in the QBO period as these levels rise.

We also identified several areas for future research: (1) running longer simulations

to minimise the impact of initial conditions (2) developing a fully-implicit scheme

that would improve the reliability of the model’s predictions and allow us to take into

consideration the temperature dependence of the attenuation rates (3) estimate sC by
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fitting it to actual real data in order to obtain more accurate and definite results in

relation to stratospheric carbon dioxide.

In conclusion, our project showcased the impacts of adding ozone feedback to the

QBO mechanism and highlighted the importance of incorporating it in our climate

models to accurately predict QBO dynamics and stability. Additionally, we identified

multiple interesting phenomena where further research could be carried out.
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Appendix A Wave Momentum Deposition

In this section we outline of how the momentum deposition term given in eq. (2) can

be derived. We start by modelling the compressible, non-isothermal stratospheric flow

u using the continuity equation (describing the conservation of mass) and the Navier-

Stokes equation (describing the conservation of momentum) for constant viscosity υ

given by

1

ρ

(
∂ρ

∂t
+ (u · ∇)ρ

)
+∇ · u = 0, (42)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ υ∇2u+

1

3
υ∇(∇ · u) + ρg, (43)

where ρ is density and g the gravitational acceleration. Since the wave perturbations

ρ′(x, t) of the average density ρ(z, t) are relatively small, we can perform the Boussinesq

approximation to reduce the non-linearity of the problem. This consists of decomposing

the density into ρ(x, t) = ρ(z) + ρ′(x, t) and assuming that ρ′(x, t) is small enough to

not affect the flow field, except that it gives rise to buoyancy forces. Hence, ρ′(x, t) is

accounted for only as part of the buoyancy force σ = −gρ′/ρ. Then, eqs. (42) and (43)

become

∇ · u = 0, (44)(
∂u

∂t
+ (u · ∇)u

)
= −∇p

ρ
+
υ∇2u

ρ
+

(ρ+ ρ′)

ρ
g, (45)

Restricting ourselves to 2D motion in the xz-plane, since the flow is incompressible

to first order (∇ · u(x, t) = 0) then we can describe the wind flow as the derivative of

a (stream)function ψ such that u = (v, 0, u) = (∂zψ, 0,−∂xψ). Then, the dynamics of

the flow are governed by two coupled equations. Firstly, taking the curl3 of eq. (45)

we obtain the vorticity equation

∂w

∂t
− υ∇2w −∇ρ′

ρ
g = (w · ∇)u− (u · ∇)w, (46)

3It is helpful to remember the following identities for any vectors a, b or scalar c (1) ∇×∇c = 0
(2) 1

2∇(a · a) = (a · ∇)a+ a× (∇× a) (3) ∇× (a× b) = (b · ∇)a− (a · ∇)b+ a(∇ · b)− b(∇ · a).
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where w = ∇× u, or in terms of the stream function (y-component of eq. (46))

∂(∇2ψ)

∂t
− υ∇4ψ +

∂σ

∂x
= J(ψ,∇2ψ) (47)

where the jacobian is defined as J(a, b) = ∂xa∂zb− ∂za∂xb. Secondly, we can close the

system by stating, following [7], that the buoyancy is governed by

∂σ

∂t
−N2∂ψ

∂x
+ µσ = J(ψ, σ) (48)

where N is the buoyancy frequency defined by N2(z) = −(g/ρ)∂zρ and µ is the

thermal dissipation rate. If we now decompose ψ = ψ(z) + ψ′(x, t) and only retain

first-order disturbance quantities we obtain the following vorticity equation

∂

∂t

(
∂u

∂z
+∇2ψ′

)
− υ∇4

(
ψ + ψ′)+ ∂σ

∂x
=
∂ψ′

∂x

∂2u

∂z2
− u

∂

∂x
∇2ψ′, (49)

where we used u = ∂zψ. Similarly, the decomposition applied to the buoyancy

equation gives
∂σ

∂t
−N2∂ψ

′

∂x
+ µσ = −u∂σ

∂x
. (50)

Assuming that we can neglect viscous dissipation of the wave (less effective than

thermal dissipation) and that the time-scale of changes in the mean flow are much

larger than those of wave motion, we neglect terms with ∂u/∂t, it can be shown [7]

that the system of eqs. (49) and (50) admits plane wave solutions of the form

ψ′
n = Re

[
ψ̃ne

ikn(x−cnt)
]
, (51)

satisfying

∂2ψ̃n

∂z2
+

[
N2(1 + iµ

k(u−cn)
)

(u− cn)2 +
µ2

k2n

− k2n −
1

u− cn

∂2u

∂z2

]
ψ̃n = 0. (52)

where ψ̃n, kn, and cn are the amplitude, wave number and horizontal phase speed of

the nth wave respectively.

To simplify we further assume that µ≪ kn(u− cn) so we can neglect µ2/k2n, that

the vertical length-scale D is much smaller than the horizontal length-scale L so

D/L≪ 1 and we can neglect k2n, and that ∂zu≪ N2 so we can neglect the ∂2zu term.
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Hence, we find
∂2ψ̃n

∂z2
+m(z)2ψ̃n = 0, (53)

with

mn(z) =

[
N2(1 + iµ

k(u−cn)
)

(u− cn)2

]1/2
≃ N2

(u− cn)2

[
1 +

iµ

2k(u− cn)

]
. (54)

whose WKB solution representing an upward propagating wave is

ψ̃n(z) = Amn(z)
−1/2 exp

(
i

∫ z

mn(z
′)dz′

)
(55)

where A is an arbitrary constant set by the boundary conditions and we have assumed

that the vertical group velocity of the wave is positive (otherwise the exponential

would be negative). The horizontal momentum flux associated with this wave is then

Fn(z, t) = u′nv
′
n = −kn

2
Re

[
i
∂ψ̃n

∂z
ψ̃∗
n

]
= −ikn

4

(
ψ̃n
∂ψ̃∗

n

∂z
− ψ̃∗

n

∂ψ̃n

∂z

)

= Fn(zl) exp

(
−
∫ z

zl

Nµ

kn(u(z′, t)− cn)
dz′
)
, (56)

where the asterisk means conjugate transpose.

Appendix B Matlab Implementation

1 %% Define mesh (spatial)

2

3 eta_l = 0; % lower boundary

4 eta_t = 4; % top boundary

5 J = 100; % number of grid points

6 deta = (eta_t -eta_l)/(J); % vertical step

7 eta = linspace(eta_l ,eta_t ,J); % vertical grid points

8

9 %% Constants and dimensions

10

11 % Dimensional constants

12 kappa_dim = 0.3; %m^2s^-1

13 F_dim = 16e-3; %m^2s^-2

14 N_dim = 2.16e-2; %s^-1

15 mu_dim = 1e-6; %s^-1

16 k_dim = 2*pi/(40e6); %m^-1

17 c_dim = 30; %m/s

18

19 H = 7000; %m

20 Omega = 7.27e-5; % rad/s

21 a = 6.371e6; % m
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22 beta_dim = 2*Omega/a; % s^-1

23

24 chi_dim = 10; %ppmv

25 L = 1e6; % m

26 R = 287; % m^2 s^-2 K ^-1

27 h = @(j) (5.4e -7*(1+(2/3)*j*deta).*(j*deta <=1.99) +1.56e-6.*(j*deta >1.99))/100; % s^-1

28 gamma_O = -2.24e-7; % s^-1

29 gamma_T = -1.24e -12*1e6; % m^-1 s

30 s_O = 8.39e-2*1e-6; % m s^-3

31 s_C = 0; % -1e-7*1e-6; % m s^-3

32

33 % Dimensionless constants

34 alpha = @(j) (0.55+0.55*(j*deta)).*(j*deta <=1.99) +1.65.*(j*deta >1.99);

35 Lambda = kappa_dim*N_dim*mu_dim /(k_dim*c_dim*F_dim);

36 eps = N_dim*mu_dim /(H*k_dim*c_dim ^2);

37 beta = beta_dim /( k_dim ^2* c_dim);

38 theta = 2*pi*k_dim*c_dim ^3/(360* N_dim*mu_dim*F_dim);

39

40 Gamma_O = gamma_O*k_dim*c_dim ^3/( mu_dim*F_dim*N_dim);

41 Gamma_T = gamma_T*L^2* Omega*c_dim ^2/(a*F_dim*chi_dim);

42

43 Xi = @(j) h(j)*L^2* Omega*mu_dim /(a*k_dim*F_dim*N_dim);

44 S_O = s_O*c_dim*chi_dim /(F_dim*N_dim ^2);

45 S_C = s_C*c_dim*chi_dim /(F_dim*N_dim ^2);

46

47 % Dimensionless variables

48 zz = @(eta) eta*(k_dim*c_dim ^2/( N_dim*mu_dim *1000))+17; %km

49 tt = @(xi) xi*( k_dim*c_dim ^3/( N_dim*mu_dim*F_dim *3600*24)); % days

50 uu = @(u) c_dim*u; % m/s

51 TT = @(T) L^2* Omega*H*N_dim*mu_dim /(R*a*k_dim*c_dim)*T; % K

52 cchi = @(chi) chi_dim*chi; % ppv m^-1

53

54 %% Define time step

55

56 dt = 0.05; % days time step

57 dxi = dt *(3600*24) *( N_dim*mu_dim*F_dim)/(k_dim*c_dim ^3); % convert

58 N = 99999; % # timesteps

59 xi = 0:dxi:dxi*N; % time array

60

61 %% Initialise arrays

62

63 u = zeros(length(eta),N+1); % mean wind array

64 T = zeros(length(eta),N+1); % temperature array

65 chi_O = zeros(length(eta),N+1); % mixing ratio array

66 w = zeros(length(eta),N+1); % upwelling array

67

68 % initial states

69 u(:,1) = 0.5* sin(pi*eta/4);

70 T(:,1) = 0.5*(pi/4)*cos(pi*eta /4);

71 chi_O (:,1) = 0.01* sin(pi*eta /2);

72 w(:,1) = -Xi(1:J) ’.*T(1:J,1)+S_O*chi_O (1:J,1);

73

74 %% Define terms in equation

75
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76 F_0K = 1; F_0RG = -1; % wave momentum flux

77 c_K = 1; c_RG = -1; % ms^-1 wavespeeds

78 k_K = 1; k_RG = 3; % km^-1 wavenumber

79

80 g_K = @(u,j,jj,n) alpha(j)./(k_K .*(u(jj ,n)-c_K).^2); % rate of decay

81 g_RG = @(u,j,jj,n) alpha(j)./( k_RG .*(u(jj ,n)-c_RG).^2) .*( beta ./( k_RG ^2.*(u(jj,n)-c_RG

)) -1); % rate of decay

82

83 F_K = @(u,j,n) F_0K.*exp(-trapz(g_K(u,j,1:j,n))*deta); % wave momentum flux

84 dF_K = @(u,j,n) -F_K(u,j,n).*g_K(u,j,j,n); % wave momentum flux derivative

85

86 F_RG = @(u,j,n) F_0RG.*exp(-trapz(g_RG(u,j,1:j,n))*deta); % wave momentum flux

87 dF_RG = @(u,j,n) -F_RG(u,j,n).*g_RG(u,j,j,n); % wave momentum flux derivative

88

89 G = @(u,j,n) -exp(eps*deta*j)*(dF_K(u,j,n)+dF_RG(u,j,n)); % forcing term

90

91 chi_V = 345/ chi_dim;

92

93 %% Time stepping

94

95 % Iterate

96 my_waitbar = waitbar(0,’Calculating QBO... (0%)’);

97 for n = 2:N

98

99 % Update u

100 a_0 = @(j) 1 + 2* Lambda*dxi/deta^2 + w(j,n-1)*dxi/deta;

101 a_m1 = @(j) - Lambda*dxi/deta^2 - w(j,n-1)*dxi/deta;

102 a_p1 = - Lambda*dxi/(deta)^2;

103 a_LHS = diag(a_0(2:J-1) ,0) + diag(a_m1 (3:J-1) ,-1) + diag(a_p1*ones(1,J-3) ,1);

104

105 GG = arrayfun(@(j)G(u,j,(n-1))*(abs(G(u,j,(n-1))) <100) +100*( abs(G(u,j,(n-1)))

>=100) ,2:J-1) ’;

106 a_RHS = u(2:J-1,n-1) + dxi*GG;

107

108 a_LHS = cat(2,[a_m1 (2) zeros(1,J-3)]’,a_LHS ,[ zeros(1,J-3) a_p1]’);

109 a_LHS = cat(1,[1 zeros(1,J-1)],a_LHS ,[zeros(1,J-3) 1 -4 3]); % BC LHS

110 a_RHS = cat(1,0,a_RHS ,0); % BC RHS

111

112 u(1:J,n) = a_LHS\a_RHS;

113

114 % Update T

115 T(1,n) = - (-3*u(1,n)+4*u(2,n)-u(3,n))/(2* deta);

116 T(2:J-1,n) = - (u(3:J,n)-u(1:J-2,n))/(2* deta);

117 T(J,n) = - (u(J-2,n) -4*u(J-1,n)+3*u(J,n))/(2* deta);

118

119 % Update chi

120 b_0 = @(j) 1 + w(j,n-1).*dxi/deta .*(w(j,n-1) >=0) - w(j,n-1).*dxi/deta .*(w(j,n-1)

<0) - dxi*Gamma_O;

121 b_m1 = @(j) - w(j,n-1).*dxi/deta .*(w(j,n-1) >=0); % if w>0 backwards difference

122 b_p1 = @(j) w(j,n-1).*dxi/deta .*(w(j,n-1) <0); % if w<0 forwards difference

123

124 b_LHS = diag(b_0(2:J-1) ,0)+diag(b_m1 (3:J-1) ,-1)+diag(b_p1 (2:J-2) ,1);

125 b_LHS = cat(2,[b_m1 (2) zeros(1,J-3)]’,b_LHS ,[ zeros(1,J-3) b_p1(J-1)]’);

126 b_RHS = chi_O (2:J-1,n-1)+dxi*Gamma_T*T(2:J-1,n);
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127

128 if w(1,n-1) > 0 % BC needed at the beginning

129 b_LHS = cat(1,[1 zeros(1,J-1)],b_LHS);

130 b_RHS = cat(1,0,b_RHS);

131 else % Point calculated using explicit forward differences

132 b_LHS = cat(1,[b_0 (1) b_p1 (1) zeros(1,J-2)],b_LHS);

133 b_RHS = cat(1,chi_O(J,n-1)+dxi*Gamma_T*T(J,n),b_RHS);

134 end

135

136 if w(J,n-1) < 0 % BC needed at the end

137 b_LHS = cat(1,b_LHS ,[zeros(1,J-3) 1 -4 3]);

138 b_RHS = cat(1,b_RHS ,0);

139 else % Point calculated using implicit backwards differences

140 b_LHS = cat(1,b_LHS ,[zeros(1,J-2) b_m1(J-1) b_0(J)]);

141 b_RHS = cat(1,b_RHS ,chi_O(J,n-1)+dxi*Gamma_T*T(J,n));

142 end

143

144 chi_O (1:J,n) = b_LHS\b_RHS;

145

146 % Update w

147 w(1:J,n) = -Xi(1:J) ’.*T(1:J,n)+S_O*chi_O (1:J,n)+S_C*chi_V*ones(J,1);

148

149 % Update waitbar

150 waitbar(n/(N-2),my_waitbar ,sprintf(’Calculating QBO... (Percentage done: %3.3f )’

,n/(N-2) *100))

151 end

152

153 %% Find period at height 24km

154

155 eta_eval = int64 ((24 -17)*(N_dim*mu_dim *1000) /( k_dim*c_dim ^2)); % eta corresponding to

24km

156 s = u(eta_eval/deta ,:); % zonal mean flow at 24km

157 [ac ,lags] = xcorr(s,s); % autocorrelation function

158 locs = islocalmax(ac); % find peaks

159 period = tt(mean(diff(lags(locs)*dxi)))/30.4167; % period in months

160

161 %% Save averages

162

163 fileID = fopen(’results.txt’,’w’);

164 fprintf(fileID ,’%12s %12s %12s\n’,’var’,’mean’,’std’);

165 fprintf(fileID ,’%12s %12f %12f\n’,’period ’, period ,0);

166 fprintf(fileID ,’%12s %12f %12f\n’,’u’, mean(uu(u(:))),std(uu(u(:))));

167 fprintf(fileID ,’%12s %12f %12f\n’,’T’, mean(TT(T(:))),std(TT(T(:))));

168 fprintf(fileID ,’%12s %12f %12f\n’,’chi’, mean(cchi(chi_O (:))),std(cchi(chi_O (:))));

169 fprintf(fileID ,’%12s %12f %12f\n’,’w’, mean(w(:)*F_dim/c_dim),std(w(:)*F_dim/c_dim));

170 fclose(fileID);
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