
Numerical Methods for Simulating Stochastic Reaction-Diffusion

Lotka-Volterra Systems

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD

B5.1 Stochastic Modelling of Biological Processes

Candidate number: 1077723

Date: April 22, 2024

Abstract. Many biological reaction-diffusion processes involve a small number

of particles. In these cases, continuum-level descriptions are not accurate, and the

fluctuating dynamics of the system can only be captured using stochastic simulations.

We provide a detailed description and comparison of four numerical methods used

to simulate reaction-diffusion phenomena: a deterministic finite difference method

and three stochastic algorithms — a particle-based method that uses Brownian

dynamics, a compartment-based method that uses the Gillespie algorithm, and a mixed

compartment-particle-based method. We analyse their performance in simulating a two-

dimensional reaction-diffusion Lotka-Volterra system with random initial conditions

and periodic boundary conditions. For all stochastic algorithms, we show that the

reaction-controlled regime — i.e. large diffusion coefficients and initial numbers of

particles — with medium-sized compartments gives results closest to the deterministic

solution. Our analysis demonstrates that, in both diffusion- and reaction-controlled

regimes, the mixed method is the least computationally expensive (except for large

numbers of particles) because it can apply larger timesteps, and the particle-based

method is the best-behaved because it is the most accurate at capturing the system’s

dynamics.

1

1 Introduction

Reaction-diffusion processes in biological systems are remarkably complex. Often,

it is impossible to obtain a full picture of the precise drivers behind their dynamics.

Classical models, based on deterministic partial differential equations, provide accurate

macroscopic predictions for systems with large numbers of particles. However, when

the number of particles is small, they fail to correctly describe the dynamics of systems

where the influence of individual particles and the stochastic nature of drivers play

a significant role. Then, it is crucial to incorporate stochasticity to account for the

discreteness of populations and randomness of events.

A wide spectrum of stochastic methods [1, 2, 3] have been developed for reaction-

diffusion systems. On one end, micro-scale approaches are computationally expensive

but can precisely keep track of the dynamics of each particle. They are based on

Brownian dynamics, and particles react when they are within a certain distance of

each other. On the other end, mesoscale approaches are computationally efficient at

the expense of representational accuracy by splitting the domain into compartments.

They are based on the Gillespie algorithm and are well-suited to describe well-mixed

systems. Between these two extremes lies a variety of mixed approaches that combine

particle- and compartment-based methods.

In this project, we give a detailed description and comparison of four algorithms that

can be used to simulate reaction-diffusion processes: (1) a macroscopic, deterministic,

finite differences method (FDM); (2) a stochastic, microscopic, particle-based method

(PBM); (3) a stochastic, mesoscopic, compartment-based method (CBM); and (4) a

stochastic, mixed compartment-particle-based method developed in [2] (CPBM).

Moreover, we analyse their performance in simulating a two-dimensional reaction-

diffusion Lotka-Volterra system. Despite its simplicity, this model manages to capture

the essential features of predator-prey interactions and, since it is easily extended, it

is the standard starting point for modelling this type of dynamics in the literature.

We hope this project serves as a review of the advantages and disadvantages of

some commonly used stochastic numerical methods and an illustration of how these

can be applied and what results to expect.

2

2 Model Description

This project uses a two-dimensional reaction-diffusion Lotka-Volterra system with

random initial conditions and periodic boundary conditions to test the accuracy and

robustness of the numerical methods. In this section, we will introduce such a system

by discussing Lotka-Volterra reactions in the absence of diffusion, then incorporating

diffusion, and finally addressing the boundary and initial conditions.

2.1. Lotka-Volterra Reactions

2.1.1 Deterministic model

The Lotka-Volterra equations [4, 5] describe predator-prey dynamics operating under

the assumptions that: (1) prey species reproduce exponentially in the absence of

predators, (2) predators die/emigrate exponentially fast in the absence of prey, and

(3) predators reproduce by consuming prey. This behaviour can be written as the

reaction scheme of two species of particles A (prey) and B (predator).

A
σ1−→ 2A, B

σ2−→ ∅, A+B
σ3−→ 2B. (1)

The deterministic temporal evolution of the concentrations cA(t) and cB(t) is
∂cA(t)

∂t
= σ1cA(t)− σ3cA(t)cB(t),

∂cB(t)
∂t

= −σ2cB(t) + σ3cA(t)cB(t).
(2)

The dynamics of this system of equations is shown in fig. 1 (a)-(b). There are two fixed

points (cA, cB) = (0, 0), (σ2/σ3, σ1/σ3) that correspond to the extinction of both species

and to co-existence, respectively. In appendix A, a stability analysis is performed to

find that such points are a saddle and a centre or elliptic fixed point. Since (0, 0) is

unstable, unless the prey population is artificially set to zero, extinction is impossible

in this model. Moreover, these equations have an integral of motion

G = σ3(cA(t) + cB(t))− (σ1 + σ2)− σ2 ln

(
cA(t)σ3

σ2

)
+ σ1 ln

(
cB(t)σ3

σ1

)
. (3)

Please refer to appendix A for more details on how to derive it. Hence, all orbits

are marginally stable. That is, small perturbations shift the system to an also-stable

3

(a)

(b)

(c)

(d)

Fig. 1: Deterministic Lotka-Volterra dynamics for σ1 = 4/3 s−1, σ2 = 2/3 s−1,
σ3 = 1 m2s−1. (a) Phase-plane with DA = DB = 0 (no diffusion), and several
initial conditions. The fixed point at (σ2/σ3, σ1/σ3) is indicated with a star. (b) One
trajectory of (a) through time. (c)-(d) Evolution of predator concentrations in a
column of a 2D domain {(x, y) ∈ ([0, 10]m, [0, 10]m)} with DA = DB = 0 (no diffusion)
and DA = DB = 0.1 m2s−1, respectivelly.

neighbouring orbit, so there is no restoring force nor amplification of the perturbation.

Therefore, overall, for a given initial condition, the populations evolve along a

closed orbit (in phase space) around the fixed point (σ2/σ3, σ1/σ3) following a cycle

where: (1) predators proliferate when prey is abundant, (2) predators eventually

outstrip their food supply and their population declines, and (3) free from predators,

prey population increases again.

2.1.2 Stochastic model

Deterministic models fail to take into account the natural stochasticity of birth-death

events as well as the discreteness of the populations. If we instead use stochastic

simulations, we see a significant behavioural change, giving qualitatively different

properties than the deterministic counterpart [4, 5]. Firstly, the system is not restricted

to one closed trajectory like in fig. 1 (a) but moves between (stable) neighbouring

orbits. Moreover, stochastic Lotka-Volterra interactions not only can, but invariably

will result in an extinction event in which the population of either the predator or

prey species disappears.

4

2.2. Lotka-Volterra Reaction-Diffusion

Predator-prey systems in ecology and chemistry usually take place in more than one

dimension so that the members of each species are allowed to roam around a domain.

In this project, we assume this movement is governed by diffusion so that we get a

deterministic spatiotemporal evolution of the concentrations cA(t) and cB(t)
∂cA(t)

∂t
= DA∇2cA + σ1cA(t)− σ3cA(t)cB(t),

∂cB(t)
∂t

= DB∇2cB − σ2cB(t) + σ3cA(t)cB(t).
(4)

However, in reality, other processes may be relevant. For example, prey might be

repelled by predators. Figure 1 (c)-(d) shows how, when diffusion is present, instead

of independent local processes at each gridpoint, there is a global evolution of the

concentration. This new system of equations shows similar periodic behaviour as the

system without diffusion, but the stable fixed point is no longer at (σ2/σ3, σ1/σ3).

Exploring how extensions of the basic model (eq. (2)) like diffusion (eq. (4)) affect

system dynamics is a rich research topic. However, this project focuses on comparing

the results of simulating the model using different numerical methods rather than

dissecting the effects that certain modelling decisions have on system dynamics.

2.3. Initial and Boundary Conditions

Let us briefly note the boundary and initial conditions we will use throughout this

project. Boundary conditions are taken to be periodic (PBCs). This standard practice

is employed to model small units within larger systems, aiming to minimize the

influence of boundary conditions on computational outcomes as much as possible.

Moreover, particles are initially randomly distributed throughout the domain.

3 Numerical Methods

In this section, we give a detailed description of four numerical methods for sim-

ulating reaction-diffusion processes. We first outline their general applicability to

any reaction system, then demonstrate their implementation for the specific case

of a two-dimensional reaction-diffusion Lotka-Volterra system with random initial

conditions and PBCs.

5

3.1. Finite Difference Method (FDM)

Consider K species in a domain

{(x, y, t) ∈ ([0, L], [0,W], [0, T])}, (5)

where L,W, T ∈ R+ describe the size of the 2D spatial domain and temporal domain,

respectively. The spatiotemporal evolution of the concentrations {ck(x, y, t) ∈ R+}Kk=1

of species undergoing reaction-diffusion can be described by a system of equations

∂ck
∂t

= Dk∇2ck + fk(c1, ..., cK), k = 1, 2, ..., K, (6)

where Dk is the diffusion coefficient and fk is the production/depletion rate of the

kth species. These equations can be numerically integrated using a finite difference

scheme in a discretised domain

{(xi, yj, tn) := (i∆x, j∆y, n∆t) ∈ ([0, L], [0,W], [0, T])}, (7)

where i = 0, 1, ..., I; j = 0, 1, ..., J ; n = 0, 1, ..., N ; ∆x = L/I; ∆y = W/J ; and ∆t =

T/N . For example, using an explicit Euler scheme, we can evolve the approximation

(Ck)
n+1
i,j of ck(xi, yj, tn+1) as

(Ck)
n+1
i,j − (Ck)

n
i,j

∆t
= Dk

[
(Ck)

n
i+1,j − 2(Ck)

n
i,j + (Ck)

n
i−1,j

(∆x)2
(8)

+
(Ck)

n
i,j+1 − 2(Ck)

n
i,j + (Ck)

n
i,j−1

(∆y)2

]
+ fk((C1)

n
i,j, ..., (CK)

n
i,j),

for i = 1, 2, ..., I − 1; j = 1, 2, ..., J − 1; and n = 0, 1, ..., N from some initial condition

(Ck)
0
ij = ck(xi, yj, 0). To set PBCs we repeat eq. (8) for the boundary points replacing

(i− 1) by I for i = 0, (i+ 1) by 0 for i = I, (j − 1) by J for j = 0 and (j + 1) by 0 for

j = J . For Lotka-Volterra reactions (eq. (1)) where the system of equations becomes

eq. (4), fA(cA, cB) = σ1cA(t)−σ3cA(t)cB(t) and fB(cA, cB) = −σ2cB(t)+ σ3cA(t)cB(t).

Please refer to appendix B.1 for a full Python implementation.

Note, however, that numerical errors in this scheme will result in outward-spiralling

solutions [5]. Implicit Euler would equally result in inward-spiralling solutions [5].

Hence, using these simple integration schemes, the populations will either explode

6

or implode into the fixed point, and more sophisticated symplectic schemes for

Hamiltonian systems like the Gauss-Legendre methods are required to obtain the

expected closed orbits. However, since this project’s focus is stochastic numerical

methods, explicit Euler was deemed acceptable as a reference if care is taken when

selecting the model parameters so that solutions do not become unreasonable.

3.2. Particle-Based Method (PBM)

Continuum representations like eq. (6) are inadequate for systems where the dis-

creteness of populations and randomness of events are significant. In these cases,

particle-based methods (PBM) [1, 2, 3] are more appropriate.

Consider K species in the domain defined in eq. (5). The state space consists

on the trajectories {(xk,m(t), yk,m(t)) ∈ [0, L]× [0,W] : m = 1, 2, ..., nk(t)}Kk=1 of the

nk(t) particles of each species k = 1, 2, ..., K. Diffusion is modelled using Brownian

dynamics [1, 2],

xk,m(t+∆t) = xk,m(t) +
√
2Dk∆tξx, yk,m(t+∆t) = yk,m(t) +

√
2Dk∆tξy, (9)

where ξx and ξy are random variables sampled from the normal distribution with zero

mean and unit variance. PBCs are implemented so if a particle leaves the domain —

(xk,m(t+∆t), yk,m(t+∆t))��∈[0, L]× [0,W] —, its image enters from the opposite end.

Zeroth and first-order reactions with reaction rates σ̃0 and σ̃1 are easily implemented.

From the definition of reaction rate, we know that the probability of a particle reacting

within a sufficiently small timestep ∆t is σ̃0WL∆t ≪ 1 and σ̃1∆t ≪ 1. Hence, we

generate random numbers υ0 and υ1 uniformly distributed in [0, 1] and, if υ0 < σ̃0WL∆t

or υ1 < σ̃1∆t the reaction fires (i.e. a particle is created at a random position in the

domain or a particle is removed) [1].

Simulating second-order reactions with a reaction rate σ̃2, requires more care. One

approach is to consider that two molecules A and B react whenever the distance

between them is less than a given radius ρ [1]. A straightforward way to determine ρ is

to take that the probability of the particles reacting within a sufficiently large timestep

∆t (
√

2(DA +DB)∆t ≫ ρ) is the ratio of areas (πρ2)/(WL). From the definition

of reaction rate, this is also (σ̃2∆t)/(WL). Hence, ρ =
√

σ̃2∆t/π and we get the

condition
√
2(DA +DB) ≫

√
σ̃2/π. This method is an approximation; it does not

7

account for the fact that not all reactant collisions result in product formation. More

advanced methods consider this by assigning a reaction probability when particles are

within the reaction radius. For this project, the simpler approach should suffice.

Algorithm 1 shows how this can be implemented for Lotka-Volterra reactions (1).

Please refer to appendix B.2 for a full Python implementation.

Algorithm 1 Particle-Based Method (PBM)

1: L,W, T ∈ R+ ▷ Domain parameters
2: ∆t ∈ R+ ▷ Time discretisation
3: DA, DB, σ1, σ2, σ3 ∈ R+ ▷ Reaction-diffusion parameters
4: (xA,m(0), yA,m(0)) ∈ [0, L]× [0,W] : m = 1, 2, ..., nA(0) ▷ Initial conditions for A
5: (xB,m(0), yB,m(0)) ∈ [0, L]× [0,W] : m = 1, 2, ..., nB(0) ▷ Initial conditions for B

6: ρ =
√

σ3∆t/π ▷ Set reaction radius
7: t← 0
8: while t < T do ▷ Evolve state

▷ Diffusion step
9: ξx, ξy ← normally distributed random numbers

10: {(xA,m(t+∆t), yA,m(t+∆t))}nA(t)
m=1 ← eq. (9) + PBCs

11: {(xB,m(t+∆t), yB,m(t+∆t))}nB(t)
m=1 ← eq. (9) + PBCs

▷ Reaction step
12: for i ∈ {1, 2, ..., nA(t)} do ▷ A→ 2A
13: υ1 ← uniformly distributed random number ∈ [0, 1]
14: if υ1 < σ1∆t then
15: Add a new particle of A at the position of particle i
16: end if
17: end for
18: for j ∈ {1, 2, ..., nB(t)} do ▷ B → ∅
19: υ2 ← uniformly distributed random number ∈ [0, 1]
20: if υ2 < σ2∆t then
21: Remove particle j of type B
22: end if
23: end for
24: for i ∈ {1, 2, ..., nA(t)} do ▷ A+B → 2B
25: for j ∈ {1, 2, ..., nB(t)} do
26: di,j ←

√
(xA,i − xB,j)2 + (yA,i − yB,j)2

27: if di,j < ρ then
28: Remove particle i of type A and add a new particle of type B
29: end if
30: end for
31: end for
32: t← t+∆t
33: end while

8

3.3. Compartment-Based Method (CBM)

PBM can become computationally expensive as the number of particles increases.

In systems where the number of particles is considerable but stochasticity remains

significant (i.e. continuum representations are still inadequate), compartment-based

methods (CBM) [1, 2, 3] provide a computationally efficient alternative by sacrificing

some representational accuracy.

Consider K species in the domain defined in eq. (5), which we divide into C =

Cx × Cy compartments. Here, Cx and Cy are the number of compartments into

which the horizontal and vertical axes are split, respectively. These compartments

have a size of l × w = L/Cx × W/Cy. Now, the state space is the number of

particles {(nk(t))ij ∈ Z : i = 0, 1, ..., Cx and j = 0, 1, ..., Cy}Kk=1 of each species in

each compartment (i, j). We then approximate Brownian motion as another set of

“reactions” in which one molecule can jump into neighbouring compartments

(nk)CyCx (nk)Cy1 (nk)Cy2 ... (nk)CyCx (nk)Cy1

(nk)1Cx (nk)11 (nk)12 ... (nk)1Cx (nk)11

(nk)2N (nk)21 (nk)22 ... (nk)2Cx (nk)21

...

(nk)CyCx (nk)Cy1 (nk)Cy2 ... (nk)CyCx (nk)Cy1

(nk)1Cx (nk)11 (nk)12 ... (nk)1Cx (nk)11

(10)

where the grey elements show the PBC, the red arrows represent horizontal diffusion

with rate constant dx,k = Dk/l
2, and the blue arrows represent vertical diffusion with

rate constant dy,k = Dk/w
2. Then, our model consists of a system of reactions —

namely diffusion “reactions” eq. (10) between compartments and chemical reactions

within each compartment — that can be simulated using the Gillespie algorithm [1, 2,

6, 7], as we will now explain.

9

In “well-mixed” systems, we can ignore spatial dynamics and the reaction intensities

only depend on the current state; i.e. the system is a Markov process. If the system

is in state X(t) = {(nk(t))ij}Kk=1 at time t, take P[τ, r|X(t)]∆t to be the probability

that the next reaction is the rth reaction at time [t+ τ, t+ τ +∆t) and P0[τ |X(t)] the

probability that no interactions take place during the interval [t, t+ τ). The Markov

(memoryless) property of the process implies that probabilities scale linearly with time

for small enough intervals, so we define the propensity function αr(X(t)) such that

the probability of the rth reaction occurring in an interval ∆t is αr(X(t))∆t. Then,

P[τ, r|X(t)]∆t = P0[τ |X(t)]αr(X(t+ τ))∆t = P0[τ |X(t)]αr(X(t))∆t, (11)

where we used that X(t+ τ) = X(t) as the reaction has not occured yet. Defining

αsum(X(t)) =
∑R

r=1 αr(X(t)) with R being the total number of possible reactions,

P0(τ+∆t|X(t)) = P0(τ |X(t))[1−αsum(X(t+τ))∆t] = P0(τ |X(t))[1−αsum(X(t))∆t].

(12)

Taking the limit ∆t→ 0 and integrating the ODE gives,

P0(τ |X(t)) = e−αsum(X(t))τ , (13)

and we can re-write eq. (11) as,

P[τ, r|X(t)] =
αr(X(t))

αsum(X(t))
αsum(X(t))e−αsum(X(t))τ . (14)

The fraction on the right-hand side of eq. (14) corresponds to the probability density

function of a discrete random variable. To determine which reaction happens next

we generate random integers r distributed according to αr(X(t))/αsum(X(t)) ∈ [0, 1].

I.e. we take a random number υ1 distributed uniformly between [0, 1] and take r to

be determined by
r−1∑
r̃=1

ar̃ ≤ υ1αsum <
r∑

r̃=1

ar̃. (15)

The rest of the right-hand side of eq. (14) corresponds to the exponential density

function of a continuous random variable. To determine when the next reaction occurs,

we generate random numbers τ distributed according to αsum(X(t))e−αsumτ∆t. I.e. we

10

take a random number υ2 distributed uniformly between [0, 1] and set it equal to the

auxiliary function F (τ) =
∫∞
τ

αsum(X(t))e−αsumτdt = e−αsumτ that is also uniformly

distributed between [0, 1], then,

τ =
1

αsum

ln

(
1

υ2

)
(16)

Hence, provided the system is at state X(t) at t, the next state at t+ τ is obtained

by updating the number of species according to reaction r.

For the two-dimensional reaction-diffusion Lotka-Volterra system, the system of

reactions consists of eq. (10) with propensity functions,

(αx,k(t))i,j = dx,k(nk(t))i,j, (αy,k(t))i,j = dy,k(nk(t))i,j. (17)

Together with eq. (1) on each compartment (i, j)

Aij
σ1−→ 2Aij, Bij

σ2−→ ∅, Aij +Bij
σ3−→ 2Bij, (18)

where Aij and Bij refer to A and B particles in compartment (i, j). Their propensity

functions are respectively

(α1(t))i,j = σ1(nA(t))i,j, (α2(t))i,j = σ2(nB(t))i,j, (α3(t))i,j =
σ3

lw
(nA(t))i,j(nB(t))i,j.

(19)

Algorithm 2 shows how this can be implemented. Please refer to appendix B.3 for a

full Python implementation.

Note that CBM is only valid for a range of compartment sizes. They must be small

enough (l ≪ L, w ≪ W) to correctly capture spatial heterogeneity and diffusion, but

big enough (l, w ≫ σ3/(DA +DB)) not to restrict second-order reactions [1].

3.4. Mixed Method (CPBM)

Sometimes PBM is prohibitively computationally expensive, but CBM cannot accu-

rately represent the reactions in the system. For example, for small diffusion coefficients

or high second-order reaction rates compartments must be considerably big to correctly

represent second-order reactions. However, this impoverishes the accuracy with which

diffusion is represented, as particles cannot move diagonally at each timestep. In

11

Algorithm 2 Compartment-Based Method (CBM)

1: L,W, T ∈ R+ ▷ Domain parameters
2: Cx, Cy ∈ Z+ ▷ Domain division into compartments
3: DA, DB, σ1, σ2, σ3 ∈ R+ ▷ Reaction-diffusion parameters
4: (nA(0))ij ∈ Z : i = 0, 1, ..., Cx and j = 0, 1, ..., Cy ▷ Initial conditions for A
5: (nB(0))ij ∈ Z : i = 0, 1, ..., Cx and j = 0, 1, ..., Cy ▷ Initial conditions for B
6: t← 0
7: while t < T do ▷ Evolve state
8: υ1, υ2 ← uniformly distributed random numbers ∈ [0, 1]
9: (αx,k(t))i,j, (αy,k(t))i,j, (α1(t))i,j, (α2(t))i,j, (α3(t))i,j ← eqs. (17) and (19)
10: αsum =

∑
i,j,k(αx,k(t))i,j + (αy,k(t))i,j + (α1(t))i,j + (α2(t))i,j + (α3(t))i,j

11: r, τ ← eqs. (15) and (16) ▷ Calculate next reaction and when it occurs
12: if r = right/left (±) diffusion of A/B in (i, j) compartment then
13: (nA/B(t+ τ))i,j ← (nA/B(t))ij − 1
14: (nA/B(t+ τ))i±1,j ← (nA/B(t))i±1,j + 1 ▷ Or (0, j)/(I, j) if i = I/0 (PBC)
15: else if r = up/down (±) diffusion of A/B in (i, j) compartment then
16: (nA/B(t+ τ))i,j ← (nA/B(t))ij − 1
17: (nA/B(t+ τ))i,j±1 ← (nA/B(t))i,j±1 + 1 ▷ Or (i, 0)/(i, J) if j = J/0 (PBC)
18: else if r = A→ 2A in (i, j) compartment then
19: (nA(t+ τ))i,j ← (nA(t))ij + 1
20: else if r = B → ∅ in (i, j) compartment then
21: (nB(t+ τ))i,j ← (nB(t))ij − 1
22: else r = A+B → 2B in (i, j) compartment then
23: (nA(t+ τ))i,j ← (nA(t))ij − 1
24: (nB(t+ τ))i,j ← (nB(t))ij + 1
25: end if
26: t← t+ τ

such cases, mixed compartment-particle-based methods (CPBM) [2, 3] are the best

option. For example, one might naturally consider using a particle-based method to

model diffusion and a compartment-based method to model reactions. This idea was

implemented by Choi et al. [2] using the operator-splitting algorithm.

Operator-splitting algorithms approximate eq. (4) with

∂c̃k
∂t

= Dk∇2c̃k,
∂

≈
ck
∂t

= fk(
≈
c1, · · · ,

≈
cK), (20)

so that, from ck(t, x, y), during the interval [t, t + ∆t), first particles diffuse from

c̃k(t, x, y) = ck(t, x, y) to c̃k(t+∆t, x, y) and then react from
≈
ck(t, x, y) = c̃k(t+∆t, x, y)

to
≈
ck(t+∆t, x, y), which is then used to set ck(t+∆t, x, y) =

≈
ck(t+∆t, x, y).

Hence, on each iteration, firstly the diffusion of particles is modelled via Brownian

12

dynamics as described in eq. (9). Secondly, the domain is split into “well-mixed”

compartments and reactions are modelled using the Gillespie algorithm for a time of

∆t as described in eqs. (14) to (16). Note that in this case, the system of reactions for

Gillespie consists only of the chemical reactions in each compartment eq. (18) and not

the diffusion “reactions” which are already accounted for through Brownian motion.

Moreover, unlike CBM, each timestep may involve several reactions.

The choice of ∆t is not trivial, and in [2], they select it depending on whether the

system is in a reaction or diffusion-dominated state. A natural timestep for diffusion

τD = min

{
l2

4DA

,
l2

4DB

,
w2

4DA

,
w2

4DB

}
, (21)

is the minimum time during which a particle of any species remains in one compartment

on average. Remembering eq. (16), a natural timestep for reaction is

τR = TR,min ln

(
1

υ

)
, TR,min = min

{
1

(α̃sum)i,j

}Cx,Cy

i,j=1,1

, (22)

where (α̃sum)i,j is the sum of chemical reaction propensities in each compartment (this

is different to αsum which is the sum of chemical and diffusion reaction propensities

over all compartments), and υ ∈ [0, 1] is a uniformly distributed random variable.

This is the minimum amount of time that you need to wait until a reaction happens

[2]. Then,

F =
TR,min

τD
(23)

can be used to classify the system as reaction or diffusion-controlled. This is done by

introducing four parameters κ1, κ
′
1, κ2, κ

′
2, so that if F < κ1 the system is diffusion-

controlled and ∆t = κ2τD, if κ1 < F < κ′
1 the system is in an intermediate state and

∆t = κ′
2τD, and if F > κ′

1 the system is reaction-controlled and ∆t = 10τD. Note that

κ1 < κ′
1, κ2 < κ′

2 < 10, and the factor of 10 was chosen by [2]. We set κ1 = 0.5 (i.e.

diffusion-controlled if τD > 2TR,min), κ
′
1 = 3 (i.e. reaction-controlled if τD < 1

3
TR,min),

κ2 = 2 (i.e. the probability of a reaction taking place during ∆t is 0.86 [2]), and

κ′
2 = 3 (by recommendation of [2]).

Algorithm 3 shows how this can be implemented. Please refer to appendix B.4 for

a full Python implementation.

13

Algorithm 3 Mixed Method (CPBM)

1: L,W, T ∈ R+ ▷ Domain parameters
2: Cx, Cy ∈ Z+ ▷ Domain division into compartments
3: DA, DB, σ1, σ2, σ3 ∈ R+ ▷ Reaction-diffusion parameters
4: (nA(0))ij ∈ Z : i = 0, 1, ..., Cx and j = 0, 1, ..., Cy ▷ Initial conditions for A
5: (nB(0))ij ∈ Z : i = 0, 1, ..., Cx and j = 0, 1, ..., Cy ▷ Initial conditions for B
6: τD ← eq. (21)
7: t← 0
8: while t < T do ▷ Evolve state
9: TR,min ← eq. (22)
10: F ← eq. (23)
11: if F < κ1 then ▷ Diffusion-controlled
12: ∆t = κ2τD
13: else if κ1 < F < κ′

1 then ▷ Intermediate state
14: ∆t = κ′

2τD
15: else ▷ Reaction-controlled
16: ∆t = 10τD
17: end if

▷ Diffusion step (Particle-based)

18: (nA(t))ij → {(xA,m(t), yA,m(t))}nA(t)
m=1 ▷ Compartments to particles

19: (nB(t))ij → {(xA,m(t), yA,m(t))}nA(t)
m=1

20: ξx, ξy ← normally distributed random numbers

21: {(xA,m(t+∆t), yA,m(t+∆t))}nA(t)
m=1 ← eq. (9) + PBC

22: {(xB,m(t+∆t), yB,m(t+∆t))}nB(t)
m=1 ← eq. (9) + PBC

▷ Reaction step (Compartment-based)

23: {(xA,m(t+∆t), yA,m(t+∆t))}nA(t)
m=1 → (nA(t+∆t))ij ▷ Back to compartments

24: {(xA,m(t+∆t), yA,m(t+∆t))}nA(t)
m=1 → (nB(t+∆t))ij

25: while t < t+∆t do
26: υ1, υ2 ← uniformly distributed random numbers ∈ [0, 1]
27: (α1(t))i,j, (α2(t))i,j, (α3(t))i,j ← eq. (19)
28: α̃sum =

∑
i,j(α1(t))i,j + (α2(t))i,j + (α3(t))i,j

29: r, τ ← eqs. (15) and (16) ▷ Calculate next reaction and when it occurs
30: if r = A→ 2A in (i, j) compartment then
31: (nA(t+ τ))i,j ← (nA(t))ij + 1
32: else if r = B → ∅ in (i, j) compartment then
33: (nB(t+ τ))i,j ← (nB(t))ij − 1
34: else r = A+B → 2B in (i, j) compartment then
35: (nA(t+ τ))i,j ← (nA(t))ij − 1
36: (nB(t+ τ))i,j ← (nB(t))ij + 1
37: end if
38: t← t+ τ
39: end while
40: end while=0

14

4 Performance Analysis

In this section, we conduct a performance analysis for each method described in

the previous section when simulating a reaction-diffusion Lotka-Volterra system in

a domain {(x, y, t) ∈ ([0, 10]m, [0, 10]m, [0, 500]s)} with reaction rates σ1 = σ2 = 0.05

s−1, σ3 = 0.05 m2s−1, random initial conditions, and PBCs. We do so in terms of the

diffusion constant, the number of particles, the number of compartments, and whether

the system is in a diffusion- or reaction-controlled regime. For the FDM and PBM

methods, the stepsize is ∆t = 0.01 s. Hence, σ1∆t = σ2∆t = 0.005 ≪ 1 so PBM’s

first-order reactions are accurately represented.

The results of the stochastic algorithms for each set of parameters are the average

of twenty trials. These runs might not simulate the same total time because some

systems might reach extinction. Hence, we measure performance in terms of the

average computational time taken per unit of simulated time. Moreover, throughout

each simulation, CBM and CPBM may use a variety of different timesteps so we plot

the average. Finally, to compare the stochastic trajectories and deterministic orbits,

we calculate the average distance from the trajectory/orbit points to the origin of the

phase plane. The closer two trajectories/orbits are, the smaller the difference between

their average distances should be.

4.1. Diffusion Constant

Figure 2 shows how, for fixed compartment size and initial number of particles, as the

diffusion constant increases: (1) the average timestep of CBM and CPBM decreases;

(2) the computational time of PBM and (for D < 0.3 m2s−1) CPBM decreases, and

the computational time of CBM and (for D > 0.3 m2s−1) CPBM increases; and (3)

all stochastic methods tend to the deterministic (FDM) solution. Overall, CPBM is

the least computationally expensive, and PBM approaches FDM the fastest.

For D < 0.3 m2s−1, the system is in a diffusion-controlled CPBM regime. For

D > 100 m2s−1, the system becomes reaction-controlled. In the next sections we

will perform experiments on D = 0.1 m2s−1 (diffusion-controlled) and D = 5 m2s−1

(almost-reaction-controlled).

15

Fig. 2: Effect of the diffusion coefficients on the performance of FDM, PBM, CBM,
and CPBM. (1st row) Solid lines represent the average of twenty trials per dot,
and the shaded regions cover one standard deviation. Dark-to-light-green regions
mark the diffusion-controlled, intermediate, and reaction-controlled CPBM regimes.
Dotted-yellow lines represent CPBM diffusion-controlled κ2τD (down) and reaction-
controlled 10τD (up) timesteps. For CBM and CPBM, the domain was split into 25
compartments (Cx = 5, Cy = 5). The initial number of particles was 50 per species.
(2nd row) five sample runs of each method for three different diffusion coefficients.

4.2. Number of particles

Figure 3 shows how, for a fixed compartment size and diffusion coefficient, as the initial

number of particles increases: (1) the average timestep of CBM and CPBM (if it is not

already κ2τD) decreases, (2) the computational time of all stochastic methods increases,

and (3) all stochastic methods tend to the deterministic (FDM) solution. We plotted

the average distance up to 100 initial particles per species because, for larger numbers,

extinction is reached faster (as reported by [4]) before full orbits are described, so this

is not a representative measure of the algorithms’ behaviours. As before, stochastic

methods converge closer and faster to the FDM for high diffusion coefficients. Again,

CPBM is the least computationally expensive, and PBM approaches FDM the fastest.

For D = 0.1 m2s−1 and D = 5 m2s−1, the system is always in a diffusion-controlled

and almost-reaction-controlled CPBM regime, respectively.

16

Fig. 3: Effect of the initial number of particles of each species on the performance
of FDM, PBM, CBM, and CPBM. Solid lines represent the average of twenty trials
per dot, and the shaded regions cover one standard deviation. Dark-to-light-green
regions mark the diffusion-controlled, intermediate, and reaction-controlled CPBM
regimes. Dotted-yellow lines represent CPBM diffusion-controlled κ2τD (down) and
reaction-controlled 10τD (up) timesteps. For CBM and CPBM, the domain was split
into 25 compartments (Cx = 5, Cy = 5). The diffusion coefficients are DA = DB = 0.1
m2s−1 (1st row) and DA = DB = 5 m2s−1 (2nd row).

4.3. Compartment size

Figure 3 shows how, for a fixed diffusion coefficient and initial number of particles,

an increasing number of compartments leads to (1) a decrease in timestep for CBM

and CPBM, (2) an increase in computational time for CBM and CPBM, and (3) For

D = 0.1 m2s−1, an initial approach and later deviation of CBM and CPBM to the

deterministic solution (FDM). For D = 5 m2s−1, CPBM deviates the furthest from

FDM in the intermediate regime, and CBM remains more or less at the same distance.

PBM and FDM remain unchanged. CPBM is the least computationally expensive.

For D = 0.1 m2s−1, the system transitions from a diffusion-controlled to an

intermediate regime at CxCy = 36. For D = 5 m2s−1, the system transitions from a

diffusion-controlled (CxCy < 4), to an intermediate (4 < CxCy < 36), to a reaction-

controlled (CxCy > 36) regime.

17

Fig. 4: Effect of the total number of compartments on the performance of CBM
and CPBM. Solid lines represent the average of twenty trials per dot, and the shaded
regions cover one standard deviation. Dark-to-light-green regions mark the diffusion-
controlled, intermediate, and reaction-controlled CPBM regimes. Dotted-yellow lines
represent CPBM diffusion-controlled κ2τD (down) and reaction-controlled 10τD (up)
timesteps. The initial number of particles was 50 per species. The diffusion coefficients
are DA = DB = 0.1 m2s−1 (1st row) and DA = DB = 5 m2s−1 (2nd row).

5 Discussion

Throughout all results and regimes, it is clear that CPBM is the least computationally

expensive because it can apply larger timesteps, and PBM is the best-behaved because

it is the most representationally accurate. Moreover, CPBM follows a closer behaviour

to PBM when the system is diffusion-controlled, and a closer behaviour to CBM when

it evolves towards reaction-controlled. We note that, overall, results are noisy, and this

project would benefit from carrying out more and longer simulations of the system in

the future.

5.1. Diffusion

Figure 2 shows the effect of diffusion on the performance of the numerical methods. In

agreement with [2], the timesteps of CBM and CPBM decrease because αsum (eq. (16))

18

increases and F (eq. (23)) decreases respectively. CPBM is the fastest of all methods

because it can apply larger time steps. PBM is the slowest except for large diffusion

coefficients where CBM exceeds it. This results from the CBM timestep’s shrinkage.

As reported by [3], all methods tend to the deterministic solution (FDM) as

the diffusion coefficient increases because the system becomes better mixed. This

agreement results from (a) an accurate representation of second-order reactions and

diffusion by FDM, (b) an accurate representation of second-order reactions by PBM

(
√

2(DA +DB)≫
√

σ3/π ≃ 0.13 ms−1/2), and (c) CBM’s and CPBM’s compartmen-

talisation being a good approximation (σ3/(DA +DB)≪ l, w = 2m).

For small diffusion coefficients, the CPBM timestep is so big (∼ 102) that it only

takes a few iterations to complete the simulation, and the distance from these points

to the origin is not representative of the algorithm’s behaviour (see the second row

of fig. 2). That is why we observe such a substantial deviation from CPBM to the

rest of the algorithms at these values. In future research, it would be interesting to

perform longer simulations so this is not an issue.

5.2. Number of Particles

Figure 3 shows the effect of the number of particles on the performance of the numerical

methods. As before, in line with [2]’s results, the timesteps of CBM and CPBM decrease

because αsum (eq. (16)) increases and F (eq. (23)) decreases respectively. This timestep

shrinkage leads to an increase in computational time, which is also seen in PBM as it

needs to keep track of a rising number of particles. Since the computational time of

particle-based methods grows faster, there might come a time when CPBM is slower

than CBM. Stochastic methods tend to the deterministic solution (FDM) with rising

numbers of particles for stochasticity becomes increasingly unimportant.

5.3. Number of Compartments

Figure 4 shows the effect of the number of compartments on the performance of the

numerical methods. The interpretation of the timestep and computational time results

is the same as for diffusion and again agrees with [2].

For D = 0.1 m2s−1, as expected, there is an initial convergence of CPM and CPBM

to FDM as the number of compartments increases for diffusion is better simulated

19

(l, w ≪ L,W = 10m). Subsequently, they deviate from FDM as the compartments get

too small to accurately simulate second-order reactions (0.25 = σ3/(DA +DB)��≪l, w).

Again, the substantial deviation from CPBM to the rest of the algorithms for a small

number of compartments is attributed to the timestep (∼ 103 s) being too big for this

distance measure to correctly portray the algorithm’s behaviour.

This is not so much the case for D = 5 m2s−1. A possible explanation is that

diffusion is fast enough for it to be correctly accounted for with big compartments,

and the ratio σ3/(DA +DB) = 0.005 is very small even compared with the smallest

compartments (l, w = 0.59 m), so second order reactions are always accurately

represented. Hence, we do not see the initial decrease and later increase in distance

we observe for D = 0.1 m2s−1.

6 Conclusion

We provided a detailed description of four algorithms that can simulate reaction-

diffusion processes: a finite differences method (FDM), a particle-based method

(PBM) that uses Brownian dynamics, a compartment-based method (CBM) that uses

the Gillespie algorithm, and a mixed compartment-particle-based method (CPBM).

We gave a detailed comparison of the four algorithms when simulating a two-

dimensional reaction-diffusion Lotka-Volterra system with random initial conditions

and periodic boundary conditions. For all stochastic algorithms, we showed that the

reaction-controlled regime — i.e. large diffusion coefficients and initial numbers of

particles — with medium-sized compartments gave results closest to the deterministic

solution. Our analysis demonstrated that, in both diffusion- and reaction-controlled

regimes, CPBM was the least computationally expensive (except for large numbers of

particles) because it could apply larger timesteps, and PBM was the best-behaved

because it was the most accurate at capturing the system’s dynamics.

In conclusion, this project reviewed the advantages and disadvantages of some

commonly used numerical methods and showcased them by simulating a reaction-

diffusion Lotka-Volterra system.

20

References

[1] R. Erban and S. J. Chapman. Stochastic Modelling of Reaction–Diffusion Pro-

cesses. Cambridge Texts in Applied Mathematics. Cambridge University Press,

2020.

[2] T. Choi et al. “Stochastic operator-splitting method for reaction-diffusion sys-

tems”. The Journal of chemical physics 137.18 (2012).

[3] Á. Ruiz-Mart́ınez et al. “Stochastic self-tuning hybrid algorithm for reaction-

diffusion systems”. The Journal of Chemical Physics 151.24 (2019).

[4] M. Parker and A. Kamenev. “Extinction in the Lotka-Volterra model”. Physical

Review E 80.2 (2009).

[5] M. Droste. “A functional approach to stochastic Lotka-Volterra equations”. MA

thesis. Utrecht University, 2021.

[6] D. T. Gillespie. “Exact stochastic simulation of coupled chemical reactions”. The

Journal of Physical Chemistry 81.25 (1977), pp. 2340–2361.

[7] M. Banaji. Supplementary Notes Part 2. Lecture Notes of B5.1 Stochastic Mod-

elling of Biological Processes. Mathematical Institute, University of Oxford, 2024.

url: https://courses.maths.ox.ac.uk/pluginfile.php/103042/mod_

resource/content/12/B51NotesPart2.pdf.

21

https://courses.maths.ox.ac.uk/pluginfile.php/103042/mod_resource/content/12/B51NotesPart2.pdf
https://courses.maths.ox.ac.uk/pluginfile.php/103042/mod_resource/content/12/B51NotesPart2.pdf

Appendix A Lotka-Volterra Stability Analysis

Throughout this section we will use the notation c = (cA, cB)
T . The fixed points of

the system of eq. (2) are found setting ∂cA(t)/∂t = ∂cB(t)/∂t = 0.

c∗ = (c∗A, c
∗
B)

T =

(0, 0)T ;

(σ2/σ3, σ1/σ3)
T .

Linearised dynamics To determine their stability the system is linearised around

each fixed point using the Jacobian.

∂c(t)

∂t
= J(c∗)[c(t)− c∗] with J(c∗) =

(
σ1 − σ3c

∗
B −σ3c

∗
A

σ3c
∗
B −σ2 + σ3c

∗
A

)
.

For the extinction fixed point c∗0 = (0, 0)T the Jacobian is

J(c∗0) =

(
σ1 0

0 −σ2

)
,

with eigenvalues {λ∗
0,j}2j=1 = {σ1,−σ2}. Since these are real and of opposite sign, the

fixed point is a saddle point, and hence it is unstable. For the coexistence fixed point

c∗1 = (σ2/σ3, σ1/σ3)
T the Jacobian is

J(c∗1) =

(
0 −σ2

σ1 0

)
,

with eigenvalues {λ∗
0,j}2j=1 = {±i

√
σ1σ2}. Since these are imaginary and of opposite

sign, the fixed point is either a center or an elliptic fixed point. Such a point is

marginally stable, so it is neither attracting nor repelling.

Full dynamics Progress in the description of the dynamics can be made using the

full-nonlinear expression. These equations can be combined as follows.

∂cA(t)

∂cB(t)
=

cA(t)

cB(t)

σ1 − σ3cB(t)

−σ2 + σ3cA(t)
.

22

Performing separation of variables gives

σ3cA(t)− σ2

cA(t)
∂cA(t) +

σ3cB(t)− σ1

cB(t)
∂cB(t) = 0.

Finally, integrating gives the constant

G = σ3(cA(t) + cB(t))− (σ1 + σ2)− σ2 ln

(
cA(t)σ3

σ2

)
− σ1 ln

(
cB(t)σ3

σ1

)
.

where G was chosen such that G = 0 at c∗1 and G→∞ as cycles approach the axes

(cA(t), cB(t)→ 0).

23

Appendix B Python Implementation

B.1. Finite Difference Method (FDM)

1 import numpy as np

2 from alive_progress import alive_bar

3

4 def discrete_laplacian(M,dx ,dy):

5 """

6 Find the discrete Laplacian of matrix M : finite differences matrix with periodic

7 boundary conditions.

8 """

9

10 L = - 2*M/(dx**2) - 2*M/(dy**2)

11 L += np.roll(M, (0, -1), (0, 1))/(dx**2) # right neighbour

12 L += np.roll(M, (0, +1), (0, 1))/(dx**2) # left neighbour

13 L += np.roll(M, (-1, 0), (0, 1))/(dy**2) # top neighbour

14 L += np.roll(M, (+1, 0), (0, 1))/(dy**2) # bottom neighbour

15 return L

16

17

18 def lotka_volterra_step(A, B, DA, DB, k1 , k2 , k3, dt, dx, dy):

19 """

20 Updates a concentration configuration according to a Lotka -Volterra model with

21 diffusion coefficients DA and DB, as well as reaction rates k1 , k2, k3.

22 """

23

24 # Get discrete Laplacians

25 LA = discrete_laplacian(A, dx, dy)

26 LB = discrete_laplacian(B, dx, dy)

27

28 # Evolve state according to reaction -diffusion equation

29 AA = A + (DA * LA + k1 * A - k3 * A * B) * dt

30 BB = B + (DB * LB - k2 * B + k3 * A * B) * dt

31

32 return AA, BB

33

34

35 def run_fdm(DA , DB, k1, k2, k3, A0 , B0 , Niter , dt , dx , dy):

36 """

37 Runs a finite difference simulation of Lotka -Volterra diffusion -reaction with

38 diffusion coefficients DA and DB , as well as reaction rates k1 , k2, k3.

39

40 The grid has a spacing of dx and dy.

41

42 The system is updated Niter times with a time interval of dt.

43

44 The initial conditions and the grid size are set by A0 and B0.

45 """

46

47 assert A0.shape == B0.shape , "A0 and B0 must have the same shape"

48 Ny, Nx = A0.shape

49

24

50 # Create arrays to store concentrations over time

51 A = np.zeros((Ny, Nx, Niter))

52 B = np.zeros((Ny, Nx, Niter))

53

54 # Set initial conditions

55 A[:, :, 0] = A0

56 B[:, :, 0] = B0

57

58 with alive_bar(Niter , force_tty=True) as bar:

59 for i in range(1, Niter):

60

61 # Update state

62 A[:, :, i], B[:, :, i] = lotka_volterra_step(A[:, :, i-1], B[:, :, i-1],

DA, DB , k1 , k2, k3, dt, dx, dy)

63 # Update progression bar

64 bar()

65

66 return A, B, dt*np.arange(Niter)

25

B.2. Particle-Based Method (PBM)

1 import numpy as np

2 from alive_progress import alive_bar

3

4 def lotka_volterra_step(A, B, DA, DB, k1 , k2 , k3 , dt, xmax , ymax):

5 """

6 Updates a configuration of particles according to a Lotka -Volterra model with

7 diffusion coefficients DA and DB , as well as reaction rates k1 , k2, k3.

8 """

9

10 rowsA , colsA = A.shape

11 rowsB , colsB = B.shape

12

13 # compute positions

14 A += np.sqrt (2*DA*dt) * np.random.normal(size=(rowsA , colsA))

15 B += np.sqrt (2*DB*dt) * np.random.normal(size=(rowsB , colsB))

16

17 # set periodic boundary conditions

18 A[:, A[0, :] < 0] = (np.array ([xmax , 0]).reshape(-1, 1) + A[:, A[0, :] < 0] -

xmax * np.floor(A[0, A[0, :] < 0] / xmax) * np.array([1, 0]).reshape(-1, 1))

19 A[:, A[1, :] < 0] = (np.array ([0, ymax]).reshape(-1, 1) + A[:, A[1, :] < 0] -

ymax * np.floor(A[1, A[1, :] < 0] / ymax) * np.array([0, 1]).reshape(-1, 1))

20 B[:, B[0, :] < 0] = (np.array ([xmax , 0]).reshape(-1, 1) + B[:, B[0, :] < 0] -

xmax * np.floor(B[0, B[0, :] < 0] / xmax) * np.array([1, 0]).reshape(-1, 1))

21 B[:, B[1, :] < 0] = (np.array ([0, ymax]).reshape(-1, 1) + B[:, B[1, :] < 0] -

ymax * np.floor(B[1, B[1, :] < 0] / ymax) * np.array([0, 1]).reshape(-1, 1))

22

23 A[:, A[0, :] > xmax] = (A[:, A[0, :] > xmax]

24 - xmax * np.floor(A[0, A[0, :] > xmax] / xmax) * np.array

([1, 0]).reshape(-1, 1))

25 A[:, A[1, :] > ymax] = (A[:, A[1, :] > ymax]

26 - ymax * np.floor(A[1, A[1, :] > ymax] / ymax) * np.array

([0, 1]).reshape(-1, 1))

27 B[:, B[0, :] > xmax] = (B[:, B[0, :] > xmax]

28 - xmax * np.floor(B[0, B[0, :] > xmax] / xmax) * np.array

([1, 0]).reshape(-1, 1))

29 B[:, B[1, :] > ymax] = (B[:, B[1, :] > ymax]

30 - ymax * np.floor(B[1, B[1, :] > ymax] / ymax) * np.array

([0, 1]).reshape(-1, 1))

31

32 # A -> 2A

33 r = np.random.rand(colsA)

34 if any(r < k1*dt):

35 new_cols = np.hstack ([A[:, i]. reshape(-1, 1) for i in range(colsA) if r[i] <

k1*dt])

36 A = np.hstack ([A, new_cols])

37

38 # B -> 0

39 r = np.random.rand(colsB)

40 B = np.delete(B, [i for i in range(colsB) if r[i] < k2*dt], 1)

41

42 # Re-evaluate rows and columns because they have changed

43 rowsA , colsA = A.shape

26

44 rowsB , colsB = B.shape

45

46 # A + B -> 2B

47 rho = np.sqrt(k3*dt/np.pi) # Reaction radius

48 euclidian_distances = np.sqrt((A*A).sum(axis =0).reshape ((colsA , 1))*np.ones(shape

=(1, colsB)) + (B*B).sum(axis =0) * np.ones(shape =(colsA , 1)) - 2 * A.T.dot(B)) #

(a-b)^2=a*a-2*a*b+b*b

49

50 idx_possible_reactions = np.argwhere(euclidian_distances < rho)

51 np.random.shuffle(idx_possible_reactions)

52

53 A_reacted = []

54 B_reacted = []

55 for idx in idx_possible_reactions:

56 if (idx [0] not in [A_idx for A_idx in A_reacted]

57 and idx [1] not in [B_idx for B_idx in B_reacted]):

58 A_reacted.append(idx [0])

59 B_reacted.append(idx [1])

60 if len(A_reacted) != 0 and len(B_reacted) != 0:

61 A = np.delete(A, [i for i in A_reacted], 1)

62 new_cols = np.hstack ([B[:, i]. reshape(-1, 1) for i in B_reacted])

63 B = np.hstack ([B, new_cols])

64

65 return A, B

66

67

68 def run_pbm(DA , DB, k1, k2, k3, A0 , B0 , Niter , dt , xmax , ymax):

69 """

70 Runs a particle -based stochastic simulation of Lotka -Volterra diffusion

71 -reaction with diffusion coefficients DA and DB, as well as reaction rates

72 k1, k2 , k3.

73

74 The domain is [0, xmax] x [0, ymax].

75

76 The system is updated Niter times with a time interval of dt.

77

78 The initial conditions are A0 and B0.

79 """

80

81 assert A0.shape [0] == 2, "A0 and B0 must be two -dimensional"

82

83 # Create variables to store extinction information

84 extinction = False

85 extinction_time = None

86

87 # Create arrays to store concentrations over time

88 A = []

89 B = []

90

91 # Set initial conditions

92 Anow = A0

93 Bnow = B0

94 A.append(Anow.copy())

95 B.append(Bnow.copy())

27

96

97 with alive_bar(Niter -1, force_tty=True) as bar:

98

99 for i in range(1, Niter):

100

101 # Update state

102 Anow , Bnow = lotka_volterra_step(A[-1], B[-1], DA, DB, k1 , k2 , k3, dt,

xmax , ymax)

103 A.append(Anow.copy())

104 B.append(Bnow.copy())

105

106 # Update progression bar

107 bar()

108

109 # Break if extinction

110 if np.sum(Anow) == 0 or np.sum(Bnow) == 0:

111 extinction = True

112 extinction_time = dt*i

113 break

114

115 t = dt * np.arange(len(A))

116

117 return A, B, t, extinction , extinction_time

28

B.3. Compartment-Based Method (CBM)

1 import numpy as np

2 from alive_progress import alive_bar

3

4 def lotka_volterra_step(A, B, DA, DB, k1 , k2 , k3 , dx, dy):

5 """

6 Updates a configuration of particles according to a Lotka -Volterra model with

7 diffusion coefficients DA and DB , as well as reaction rates k1 , k2, k3.

8 """

9

10 ny, nx = A.shape # size array

11

12 # Reaction rates

13

14 kx_A = DA/(dx**2) # A horizontal diffusion

15 ky_A = DA/(dy**2) # A vertical diffusion

16

17 kx_B = DB/(dx**2) # B horizontal diffusion

18 ky_B = DB/(dy**2) # B vertical diffusion

19

20 # Generate two random numbers r1, r2, uniformly distributed in [0,1]

21

22 r1, r2 = np.random.rand (2)

23

24 # Compute the propensity function of each reaction

25

26 chi_A_ij = A * kx_A # A: horizontal diffusion

27 ups_A_ij = A * ky_A # A: vertical diffusion

28 chi_B_ij = B * kx_B # B: horizontal diffusion

29 ups_B_ij = B * ky_B # B: vertical diffusion

30

31 alpha_ij = A * k1 # A -> 2A

32 beta_ij = B * k2 # B -> 0

33 gamma_ij = A * B * k3 / (dx*dy) # A + B -> 2B

34

35 # Compute array of propensities

36

37 a = np.concatenate(

38 [chi_A_ij.flatten (), chi_A_ij.flatten (), ups_A_ij.flatten (), ups_A_ij.flatten

(), # diffusion A

39 chi_B_ij.flatten (), chi_B_ij.flatten (), ups_B_ij.flatten (), ups_B_ij.flatten

(), # diffusion B

40 alpha_ij.flatten (), beta_ij.flatten (), gamma_ij.flatten ()]) # Lotka -

Volterra reactions

41

42 # Compute total propensity

43 a_sum = np.sum(a)

44

45 if a_sum == 0:

46 return A, B, 0

47

48 # Compute the time at which the chemical reaction takes place tau

49

29

50 tau = (1/ a_sum)*np.log(1/r1)

51

52 # Compute which reaction takes place

53

54 cumsum_a = np.cumsum(a / np.sum(a))

55 r_index = np.min(np.where(r2 < cumsum_a))

56

57 # Update number of particles

58

59 if r_index < nx*ny: # A x-dir right

60 ix = r_index % ny

61 iy = int(r_index / ny)

62

63 A[iy, ix] -= 1

64 if ix+1 == nx: A[iy , 0] += 1

65 else: A[iy , ix+1] += 1

66

67 elif r_index < 2*nx*ny: # A x-dir left

68 ix = (r_index -nx*ny) % ny

69 iy = int((r_index -nx*ny) / ny)

70

71 A[iy, ix] -= 1

72 A[iy, ix -1] += 1

73

74 elif r_index < 3*nx*ny: # A y-dir up

75 ix = (r_index - 2*nx*ny) % ny

76 iy = int((r_index - 2*nx*ny) / ny)

77

78 A[iy, ix] -= 1

79 if iy+1 == ny: A[0, ix] += 1

80 else: A[iy+1, ix] += 1

81

82 elif r_index < 4*nx*ny: # A y-dir down

83 ix = (r_index - 3*nx*ny) % ny

84 iy = int((r_index - 3*nx*ny) / ny)

85

86 A[iy, ix] -= 1

87 A[iy -1, ix] += 1

88

89 elif r_index < 5*nx*ny: # B x-dir right

90 ix = (r_index - 4*nx*ny) % ny

91 iy = int((r_index - 4*nx*ny) / ny)

92

93 B[iy, ix] -= 1

94 if ix+1 == nx: B[iy , 0] += 1

95 else: B[iy , ix+1] += 1

96

97 elif r_index < 6*nx*ny: # B x-dir left

98 ix = (r_index - 5*nx*ny) % ny

99 iy = int((r_index - 5*nx*ny) / ny)

100

101 B[iy, ix] -= 1

102 B[iy, ix -1] += 1

103

30

104 elif r_index < 7*nx*ny: # B y-dir up

105 ix = (r_index - 6*nx*ny) % ny

106 iy = int((r_index - 6*nx*ny) / ny)

107

108 B[iy, ix] -= 1

109 if iy+1 == ny: B[0, ix] += 1

110 else: B[iy+1, ix] += 1

111

112 elif r_index < 8*nx*ny: # B y-dir down

113 ix = (r_index - 7*nx*ny) % ny

114 iy = int((r_index - 7*nx*ny) / ny)

115

116 B[iy, ix] -= 1

117 B[iy -1, ix] += 1

118

119 elif r_index < 9*nx*ny: # A -> 2A

120 ix = (r_index - 8*nx*ny) % ny

121 iy = int((r_index - 8*nx*ny) / ny)

122

123 A[iy, ix] += 1

124

125 elif r_index < 10*nx*ny: # B -> 0

126 ix = (r_index - 9*nx*ny) % ny

127 iy = int((r_index - 9*nx*ny) / ny)

128

129 B[iy, ix] -= 1

130

131 elif r_index < 11*nx*ny: # A + B -> 2B

132 ix = (r_index - 10*nx*ny) % ny

133 iy = int((r_index - 10*nx*ny) / ny)

134

135 A[iy, ix] -= 1

136 B[iy, ix] += 1

137

138 else:

139 raise "Error: reaction index out of range"

140

141 return A, B, tau

142

143 def run_cbm(DA , DB, k1, k2, k3, A0 , B0 , ttot , dx, dy):

144 """

145 Runs a compartment -based stochastic simulation of Lotka -Volterra diffusion

146 -reaction with diffusion coefficients DA and DB, as well as reaction rates

147 k1, k2 , k3.

148

149 The grid has a spacing of dx and dy.

150

151 The system is updated until time ttot is reached.

152

153 The initial conditions and the grid size are set by A0 and B0.

154 """

155

156 assert A0.shape == B0.shape , "A0 and B0 must have the same shape"

157

31

158 # Create variables to store extinction information

159 extinction = False

160 extinction_time = None

161

162 # Create arrays to store concentrations over time

163 A = []

164 B = []

165

166 # Set initial conditions

167 Anow = A0

168 Bnow = B0

169 A.append(Anow.copy())

170 B.append(Bnow.copy())

171 t = [0]

172

173 with alive_bar(manual=True , force_tty=True) as bar:

174

175 while t[-1] < ttot:

176

177 # Update state

178 Anow , Bnow , tau = lotka_volterra_step(A[-1], B[-1], DA , DB, k1, k2, k3,

dx, dy)

179 A.append(Anow.copy())

180 B.append(Bnow.copy())

181 t.append(t[-1] + tau)

182

183 # Update progression bar

184 bar(t[-1]/ ttot)

185

186 # Break if extinction

187 if np.sum(Anow) == 0 or np.sum(Bnow) == 0:

188 extinction = True

189 extinction_time = t[-1]

190 break

191

192 A = np.dstack(A)

193 B = np.dstack(B)

194 t = np.array(t).flatten ()

195

196 return A, B, t, extinction , extinction_time

32

B.4. Mixed Method (CPBM)

1 import numpy as np

2 from alive_progress import alive_bar

3 import time

4

5 def find_F(A, B, k1, k2 , k3 , dx, dy, tau_D):

6 """

7 Finds the time fraction F=T_R ,min/tau_D for a Lotka -Volterra system with

8 reaction rates k1, k2, k3 divided in compartments of size dx x dy.

9 """

10

11 # Compute the propensity function of each reaction

12

13 alpha_ij = A * k1 # A -> 2A

14 beta_ij = B * k2 # B -> 0

15 gamma_ij = A * B * k3 / (dx * dy) # A + B -> 2B

16

17 # Compute array of propensities

18

19 a = np.dstack ([alpha_ij , beta_ij , gamma_ij])

20

21 # Compute total propensity

22 a_sum = np.sum(a, 2)

23

24 # Compute constants

25 T_min = np.min (1/np.max(a_sum))

26 F = T_min/tau_D

27

28 return F

29

30 def diffusion_step(A_compartments , B_compartments , DA , DB, dt, dx, dy):

31 """

32 Carries out a diffusion step for particles A and B with diffusion constants

33 DA and DB distributed in compartments of size dx x dy.

34 """

35

36 Ky, Kx = A_compartments.shape

37 xmax , ymax = Kx*dx, Ky*dy

38

39 # from compartments to particles

40 A_particles = []

41 B_particles = []

42 for i in range(Ky):

43 for j in range(Kx):

44 for m in range(int(A_compartments[i,j])):

45 rand = np.random.rand (2)*np.array([dx , dy])+np.array ([dx*j, dy*i])

46 A_particles.append(rand.reshape(-1, 1))

47 for n in range(int(B_compartments[i,j])):

48 rand = np.random.rand (2) * np.array([dx , dy]) + np.array([dx*j, dy*i

])

49 B_particles.append(rand.reshape(-1, 1))

50 A_particles = np.hstack(A_particles)

51 B_particles = np.hstack(B_particles)

33

52

53 rowsA , colsA = A_particles.shape

54 rowsB , colsB = B_particles.shape

55

56 # compute positions

57 A_particles += np.sqrt(2 * DA * dt) * np.random.normal(size=(rowsA , colsA))

58 B_particles += np.sqrt(2 * DB * dt) * np.random.normal(size=(rowsB , colsB))

59

60 # set periodic boundary conditions

61 A_particles [:, A_particles [0, :] < 0] = (np.array ([xmax , 0]).reshape(-1, 1) +

A_particles [:, A_particles [0, :] < 0] - xmax * np.floor(A_particles [0,

A_particles [0, :] < 0] / xmax) * np.array([1, 0]).reshape(-1, 1))

62 A_particles [:, A_particles [1, :] < 0] = (np.array ([0, ymax]).reshape(-1, 1) +

A_particles [:, A_particles [1, :] < 0] - ymax * np.floor(A_particles [1,

A_particles [1, :] < 0] / ymax) * np.array([0, 1]).reshape(-1, 1))

63 B_particles [:, B_particles [0, :] < 0] = (np.array ([xmax , 0]).reshape(-1, 1) +

B_particles [:, B_particles [0, :] < 0] - xmax * np.floor(B_particles [0,

B_particles [0, :] < 0] / xmax) * np.array([1, 0]).reshape(-1, 1))

64 B_particles [:, B_particles [1, :] < 0] = (np.array ([0, ymax]).reshape(-1, 1) +

B_particles [:, B_particles [1, :] < 0] - ymax * np.floor(B_particles [1,

B_particles [1, :] < 0] / ymax) * np.array([0, 1]).reshape(-1, 1))

65

66 A_particles [:, A_particles [0, :] > xmax] = (A_particles [:, A_particles [0, :] >

xmax] - xmax * np.floor(A_particles [0, A_particles [0, :] > xmax] / xmax) * np.

array ([1 ,0]).reshape (-1,1))

67 A_particles [:, A_particles [1, :] > ymax] = (A_particles [:, A_particles [1, :] >

ymax] - ymax * np.floor(A_particles [1, A_particles [1, :] > ymax] / ymax) * np.

array ([0 ,1]).reshape (-1,1))

68 B_particles [:, B_particles [0, :] > xmax] = (B_particles [:, B_particles [0, :] >

xmax] - xmax * np.floor(B_particles [0, B_particles [0, :] > xmax] / xmax) * np.

array ([1 ,0]).reshape (-1,1))

69 B_particles [:, B_particles [1, :] > ymax] = (B_particles [:, B_particles [1, :] >

ymax] - ymax * np.floor(B_particles [1, B_particles [1, :] > ymax] / ymax) * np.

array ([0 ,1]).reshape (-1,1))

70

71 # from particles to compartments

72 A_compartments = np.zeros_like(A_compartments)

73 B_compartments = np.zeros_like(A_compartments)

74 for coord_A in A_particles.T:

75 j = int(coord_A [0]/dx)

76 i = int(coord_A [1]/dy)

77 A_compartments[i, j] += 1

78 for coord_B in B_particles.T:

79 j = int(coord_B [0]/dx)

80 i = int(coord_B [1]/dy)

81 B_compartments[i, j] += 1

82

83 return A_compartments , B_compartments

84

85 def reaction_step(A, B, k1, k2, k3, dx, dy):

86 """

87 Carries out a reactions during a time interval dt at each compartment

88 of size dx x dy of a Lotka -Volterra system with reaction rates k1 , k2

89 and k3.

34

90 """

91

92 ny, nx = A.shape # size array

93

94 # Generate two random numbers r1, r2, uniformly distributed in (0,1)

95

96 r1, r2 = np.random.rand (2)

97

98 # Compute the propensity function of each reaction

99

100 alpha_ij = A * k1 # A -> 2A

101 beta_ij = B * k2 # B -> 0

102 gamma_ij = A * B * k3 / (dx * dy) # A + B -> 2B

103

104 # Compute array of propensities

105

106 a = np.concatenate(

107 [alpha_ij.flatten (), beta_ij.flatten (), gamma_ij.flatten ()])

108

109 # Compute total propensity

110 a_sum = np.sum(a)

111

112 if a_sum == 0:

113 return A, B, 0

114

115 # Compute the time at which the chemical reaction takes place tau

116

117 tau = (1 / a_sum) * np.log(1 / r1)

118

119 # Compute which reaction takes place

120

121 cumsum_a = np.cumsum(a / np.sum(a))

122 r_index = np.min(np.where(r2 < cumsum_a))

123

124 # Update number of particles

125

126 if r_index < nx * ny: # reaction 1: A -> 2A

127 ix = r_index % ny

128 iy = int(r_index / ny)

129

130 A[iy, ix] += 1

131

132 elif r_index < 2 * nx * ny: # reaction 2: B -> 0

133 ix = (r_index - nx * ny) % ny

134 iy = int((r_index - nx * ny) / ny)

135

136 B[iy, ix] -= 1

137

138 elif r_index < 3 * nx * ny: # reaction 3: A + B -> 2B

139 ix = (r_index - 2 * nx * ny) % ny

140 iy = int((r_index - 2 * nx * ny) / ny)

141

142 A[iy, ix] -= 1

143 B[iy, ix] += 1

35

144

145 else:

146 raise "Error: reaction index out of range"

147

148 return A, B, tau

149

150 def run_cpbm(DA, DB, k1, k2, k3 , A0 , B0, ttot , dx , dy , alpha_1 = 0.5, alpha_11 = 3,

alpha_2 = 2, alpha_22 = 3):

151

152 """

153 Runs a mixed compartment -particle -based stochastic simulation of Lotka -

154 Volterra diffusion -reaction with diffusion coefficients DA and DB , as

155 well as reaction rates k1 , k2, k3.

156

157 The grid has a spacing of dx and dy.

158

159 The system is updated until time ttot is reached.

160

161 The initial conditions and the grid size are set by A0 and B0.

162 """

163

164 start = time.time()

165 assert A0.shape == B0.shape , "A0 and B0 must have the same shape"

166

167 # Create variables to store extinction information

168 extinction = False

169 extinction_time = None

170

171 # Create arrays to store concentrations over time

172 A = []

173 B = []

174

175 # Set initial conditions

176 Anow = A0

177 Bnow = B0

178 A.append(Anow.copy())

179 B.append(Bnow.copy())

180 t = [0]

181

182 # Set diffusion time

183 d = 2 # system dimensionality

184 tau_D = min(dx **2/(2* max(DA, DB)*d), dy **2/(2* max(DA, DB)))

185

186 with alive_bar(manual=True , force_tty=True) as bar:

187

188 while t[-1] < ttot:

189

190 # set timestep

191 F = find_F(A[-1], B[-1], k1, k2, k3, dx, dy , tau_D)

192 tau = None

193 if F < alpha_1: # diffusion controlled

194 tau = alpha_2*tau_D

195 elif alpha_1 < F < alpha_11: # mixed zone

196 tau = alpha_22*tau_D

36

197 else: # reaction controlled

198 tau = 10* tau_D

199

200 # diffusion process

201 Anow , Bnow = diffusion_step(A[-1], B[-1], DA, DB, tau , dx, dy)

202

203 # reaction process

204 t_reac = 0

205 while t_reac < tau:

206 Anow , Bnow , tnow = reaction_step(Anow , Bnow , k1, k2, k3, dx , dy)

207 t_reac += tnow

208

209 # update state

210 A.append(Anow.copy())

211 B.append(Bnow.copy())

212 t.append(t[-1] + tau)

213

214 # Update progression bar

215 bar(t[-1]/ ttot)

216

217 # Break if extinction

218 if np.sum(Anow) == 0 or np.sum(Bnow) == 0:

219 extinction = True

220 extinction_time = t[-1]

221 break

222

223 # Break if taking too long

224 now = time.time()

225 if now -start > 30*60:

226 break

227

228 A = np.dstack(A)

229 B = np.dstack(B)

230 t = np.array(t).flatten ()

231

232 return A, B, t, extinction , extinction_time

37

	Introduction
	Model Description
	Lotka-Volterra Reactions
	Deterministic model
	Stochastic model

	Lotka-Volterra Reaction-Diffusion
	Initial and Boundary Conditions

	Numerical Methods
	Finite Difference Method (FDM)
	Particle-Based Method (PBM)
	Compartment-Based Method (CBM)
	Mixed Method (CPBM)

	Performance Analysis
	Diffusion Constant
	Number of particles
	Compartment size

	Discussion
	Diffusion
	Number of Particles
	Number of Compartments

	Conclusion
	Lotka-Volterra Stability Analysis
	Python Implementation
	Finite Difference Method (FDM)
	Particle-Based Method (PBM)
	Compartment-Based Method (CBM)
	Mixed Method (CPBM)

