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Abstract. The current theory of neurodegenerative diseases like Alzheimer’s (AD)

holds that the prion-like formation and spread of pathological protein aggregates in the

brain along anatomically connected networks plays a central role in cognitive decline,

structural damage, and ultimately death of the affected individual. Pathologically, AD

is characterised by the accumulation of toxic amyloid-beta (Aβ) and tau-protein (τP)

following specific spatial progressions through the brain, and brain atrophy beyond

normal ageing. This project undergoes a comprehensive exploration of AD, through

the development of network reaction-diffusion models for the spread of toxic τP. We

will see how even the simplest models (Fisher-KPP) can recover the shape, staging

and timescales of AD’s biomarker curves. We will then move to a model considering

a more detailed description of protein dynamics including nucleation, aggregation,

depolymerisation and clearance mechanisms, as well as clearance deterioration due

to the build-up of toxic τP. Finally, we will augment this model to consider brain

atrophy in the form of axonal pathway degeneration and volume loss.
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1 Introduction

1.1. Prion Diseases

Proteins [1] are the base of cellular structure, metabolism, and communication. Each

type of protein has a different role and, to fulfil it adequately, it must fold properly

into a specific 3D structure. A healthy cell has quality-control mechanisms that ensure

proteins are properly produced, folded, and eliminated. If these mechanisms are

impaired it can lead to pathology.

Common disorders of this type are prion diseases [1, 2, 3, 4], where misfolded

protein molecules (prions) act as corruptive seeds that aggregate and impose their

anomalous structure on healthy molecules. This chain reaction of aggregation and

misfolding leads to the generation of intracellular and or extracellular deposits that

can cause a diverse range of pathologies.

Prion proteins are found most abundantly in the brain, which is physically and

functionally organised as a network, optimised for transmitting information [3]. Unfor-

tunately, it seems that misfolded proteins spread mainly through neuronal pathways

[4] so this optimality also applies to the spread of prions. The current theory of neu-

rodegenerative diseases like Alzheimer’s (AD) holds that the prion-like formation and

spread of pathological protein aggregates in the brain along anatomically connected

networks plays a central role in cognitive decline, structural damage, and ultimately

cause the death of the affected individual. This is known as the prion-like hypothesis

[1, 2, 3, 4] .

1.2. Alzheimer’s Disease (AD)

Over the past century, with an ageing world population, AD has become a priority

for global neurodegenerative disease research [2, 5]. AD is the most common cause

of dementia, affecting 1 in 14 people over the age of 65 and 1 in every 6 people over

the age of 80 [5]. Pathologically, AD is characterised by the accumulation of toxic

amyloid-beta (Aβ) and tau-protein (τP) following specific spatial progressions through

the brain, and brain atrophy beyond normal ageing [1, 5, 6, 7]. However, since many

cellular mechanisms are poorly understood in vivo, it is hard to establish the relative

contribution of the different toxic proteins (and their interactions) to atrophy.
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Aβ [1, 2, 3, 8] is a normal metabolic waste by-product of the cleavage of the Aβ

precursor protein, although its physiological role remains undetermined. When it

misfolds, it forms extracellular aggregates and plaques, so it mainly spreads through

the extracellular matrix. Previously, the accumulation of toxic amyloid-beta (Aβ)

protein was thought to be not only an early indicator of the disease but the primary

driver (amyloid-beta hypothesis [2, 8]). However, experimental evidence revealing that

Aβ plaques can develop over many years without associated cognitive decline, and the

failure in clinical trials focused on the reduction of Aβ plaques has led to the search

for other possible mechanisms [2, 8].

τP [1, 2, 3] is a cytoplasmatic protein that normally helps to stabilise microtubules.

When it misfolds, it can form large disorganised neurofibrillary tangles (NFTs) which

propagate intracellularly to anatomically connected sites in the network of axonal

pathways. Significant evidence suggests that τP, not only contributes to the disease,

but its accumulation marks the start of cognitive decline [2, 9]. Hence, attributing a

more prominent role in the progression of AD to τP has become an obvious alternative

to the amyloid-beta hypothesis, and its study is becoming increasingly popular.

Findings suggest that the accumulation of Aβ and τP promotes brain atrophy

beyond what is associated with normal ageing. Two of the main forms it takes are

progressive axonal degeneration and destruction [6], and volume loss [7, 10, 11].

1.3. This Project

This project aims to simulate the spread of toxic τP through the brain using a network

reaction-diffusion model. In section 2, we will give a quick theoretical introduction

to this type of model and its objectives. In section 3, we will go over the specifics of

the network used. Section 4 will explore how the simplest protein kinetic model can

recover the shape, pattern, and timescales of invasion of τP. Next, in section 5, we will

consider a more complete model including nucleation, aggregation, depolymerisation,

and clearance mechanisms, as well as clearance deterioration due to the build-up of

toxic τP. We will give a complete analysis of its behaviour at the single node, network,

and organ levels. Finally, in section 6, we will augment this model to consider brain

atrophy in the form of axonal pathway degeneration and volume loss.
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2 Theory: General Staging Problem

Consider a continuous domain B representing the brain, with boundary δB. The

evolution of the concentration p(x, t) of misfolded τP can be described as the diffusion-

reaction dynamical system

dp(x, t)

dt
= ρ∇ · (K · ∇p(x, t)) + f(t, p(x, t)), x ∈ B, (1a)

p(x, 0) = p0(x), x ∈ B, (1b)

(K · ∇p(x, t)) · n̂(x) = 0, x ∈ δB, (1c)

where ρ is the effective diffusion constant, K is the diffusion tensor, f is the reaction

term, p0(x) is the initial seeding, and n̂ is the normal to the boundary [12]. Note that

(1) the first term on the right-hand side of eq. (1a) is Fick’s law of diffusion, and (2)

the Neumann boundary condition (eq. (1c)) enforces mass conservation in the absence

of a reaction term (i.e. τP proteins can only be created or destroyed via reactions).

Now consider a brain network G = (V,E), with nodes V = {vi}Ni=1 representing

anatomical regions and edges E = {eij}Mi,j=1 representing the connectivity between

regions vi and vj. The evolution of concentrations {pi(t)}Ni=1 at each node from an

initial seeding pi,0 can be found discretising eqs. (1a) to (1c) as

dpi(t)

dt
= −ρ

N∑
j=1

Lijpj(t) + f(t, pi(t)), i = 1, 2, ..., N, (2a)

pi(0) = pi,0, i = 1, 2, ..., N, (2b)

where L is the graph Laplacian [12]. To enforce an equivalent of Fick’s law of diffusion

(i.e. that transport is driven by a difference in concentrations), we must have

L · 1 = 0, (3)

where 1 = (1, 1, ..., 1). To enforce the Neumann boundary condition (eq. (1c)), L
must conserve mass. Let p = (p1, p2, ..., pN) and ν = (ν1, ν2, ..., νN), where νi is the

volume of node vi. Then, when the reaction term in eq. (2a) is zero,

dp(t)

dt
= −ρL · p(t), (4)
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and conservation of total mass M requires

dM

dt
=

N∑
i=1

νi
dpi(t)

dt
≡ ν · dp(t)

dt
= 0. (5)

Substituting eq. (4) into eq. (5) gives ν · (L ·p) = 0, which must hold for all p. Hence,

ν ·L = 0. (6)

As demonstrated in [12], eqs. (3) and (6) can be met choosing

L = νV −1L, (7)

where V = diag(ν), ν is a characteristic volume (for simplicity we take ν = 1 µm3,

another option would be ν =
∑N

i=1 νi), and L is the standard graph Laplacian

L = D −W , (8)

where W is the weighted adjacency matrix that codifies the connectivity between the

vertices of G, and D is the diagonal degree matrix defined by Dii =
∑N

j=1Wij.

In this project, we explore how different modelling decisions — reaction terms,

parameter values, etc. — modify how the disease spreads. We will identify the best

choices by assessing which evolutions are closer to clinical observations. To do so, we

must establish some metrics to characterise the evolution of neurodegeneration [3, 12].

First, we define a collection of disjoint subsets of V {Ωj}Jj=1 representing the brain

regions where τP spreads at each stage of the disease. As pi(t) evolves according to

eqs. (2a) and (2b), we calculate the average concentration of misfolded τP (biomarker

abnormality) at each Ωj. We then expect the brain to get infected in an ordered

sequence Ω1, Ω2, ..., ΩJ following the clinically observed spreading pattern.

braak I braak II braak III braak IV braak V braak VI

Fig. 1: Front and side view of the braak regions {Ωi}6i=1 on the connectome.

5



3 Methods

In this project we consider a network G of N = 83 nodes and M = 1654 edges built

from the data generated by the Human Connectome Project (HCP) [13]. The number

of edges per node varies between a minimum of 12 at the frontal pole and a maximum

of 67 at the thalamus. Each edge eij has an associated number of fibres, nij , and fibre

length, lij. Following [3], we choose a “ballistic weighting”

Wij =
nij

lij
. (9)

which is then normalised so that W has no units.

We also define a preferred activation sequence. As shown in fig. 1, we define

six regions of the brain, {Ωi}6i=1, called “braaks”, which have been observed to be

infected by toxic τP in stages [1, 2, 3, 12, 14]. Starting at the entorhinal cortex (braak

I), τP spreads to the rest of the medial temporal lobe, namely the hippocampus,

essential for short-term memory (braak II). After the rest of the temporal lobe —

crucial to language — is infected (braak III), τP spreads to other zones of the limbic

system — responsible for emotion, behaviour, and long-term memory — and the

insula (braak IV). Finally, τP extends widely into other neocortical association areas

and the brainstem — responsible for vital functions like breathing and sleeping —

(braak V) and then to the primary sensory and motor cortices (braak VI). Hence, at

the beginning of the simulations, we seed toxic τP at braak I (Ω1) with

pi(0) =

1/20, i|vi ∈ Ω1,

0, i|vi ��∈ Ω1.
(10)

The simulations in future sections use a common set of model parameters (Table 1).

Parameter Description Value

ρ effective diffusion constant 0.01 yr−1

α conversion rate from healthy to misfolded state 2.10 yr−1

λcrit clearance value above which no aggregates are formed 0.72 yr−1

λ∞ minimum clearance value 0.01 yr−1

β node vulnerability 1.00 yr−1

a rate of volume loss due to aging 0.005 yr−1

γ rate of volume loss due to AD 0.005 yr−1

Table 1: Description and numerical values of the parameters used.
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4 Fisher-KPP Model

4.1. Model

We start by considering the simplest mathematical description of protein misfolding.

p̂
α−→ p (11)

That is, healthy proteins p̂ misfold to the toxic state p with a local conversion rate

α. Adding these reaction kinetics to eq. (1a) gives the Fisher-Kolmogorov-Petrovsky-

Piskunov (Fisher-KPP) model [3, 12]

dp(x, t)

dt
= ρ∇ · (K · ∇p(x, t)) + αp(x, t)(1− p(x, t)), (12)

where p ∈ [0, 1] and has no units. This system has an unstable fixed point p∗ = 0

that corresponds to a completely healthy state, and a stable fixed point p∗ = 1 that

corresponds to a completely infected state. Moreover, it has two asymptotic regimes:

Diffusion-dominated α ≪ ρ,

Growth-dominated ρ ≪ α.

We can discretise eq. (12) to the form of eq. (2a) giving

dpi(t)

dt
= −ρ

N∑
j=1

Lijpj(t) + αpi(t)(1− pi(t)), i = 1, 2, ..., N. (13)

4.2. Results and Discussion

4.2.1 Diffusion- and Growth-Dominated Regimes

Figure 2 shows the two asymptotic regimes of Fisher-KPP, both displaying a smooth

sigmoidal shape, in agreement with clinical biomarker models of neurodegeneration

[3]. However, the diffusion-dominated regime does not display the expected spreading

pattern discussed in section 3, where the braaks are infected in stages. On the other

hand, the growth-dominated regime agrees perfectly with it. Hence, from now on, we

will only work within the growth-dominated regime setting ρ = 0.01 yr−1 as recorded

in table 1.
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Fig. 2: Asymptotic regimes of the Fisher-KPP model. Equation (13) was integrated
using explicit Euler. α was chosen as defined in table 1 and ρ was set to 100 yr−1 for
the diffusion-dominated regime (left) and 0.01 yr−1 for the growth-dominated regime
(right). The initial conditions were set to eq. (10).

Fig. 3: Effect of taking volume into account in the Fisher-KPP model. Equation (13)
was integrated using explicit Euler. α and ρ were chosen as defined in table 1 and ν
was set to 1 µm3 for the left plot and to the values generated by HCP [13] for the
right plot. The initial conditions were set to eq. (10).

4.2.2 Volume

In the previous sections, we assumed all nodes had the same volume (i.e. ν = 1 µm3).

Figure 3 shows how the biomarker curves change when differences in the volume of

each brain region are accounted for. The lines curve horizontally (especially braak IV)

because now each region’s volume is larger, taking longer to infect it. This gives a

more accurate timescale for the evolution of the disease in each region with respect to

the others. Hence, from now on we will take into account the different volumes.
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4.3. Conclusion

Equation (13) is a good starting point for modelling the spread of toxic τP through

the brain. It can recreate the shape, staging, and timescale of invasion of τP. Still, it

is greatly limited by the crudeness of the kinetics it considers (eq. (11)). The main

consequence of this oversimplification is that there is only one stable fixed point at

p∗ = 1, so intermediate equilibrium states are not captured. As soon as a misfolded

protein appears (p > 0), the brain will become completely infected. In reality, low

levels of toxic τP can be present in a healthy brain without leading to pathology [4, 8].

5 Protein Kinetics and Clearance

5.1. Model

The aggregation of τP into NFTs is more complicated than eq. (11). Smoluchowski

models capture its dynamics more accurately by thinking of healthy τP as monomers

(■) which group into larger toxic oligomers (□□ · · ·□), namely the NFTs. The

total concentration of monomers is p̂, and the total concentration of oligomers of all

sizes is p. Then, we have the following processes

monomer production: ∅ →■ (14a)

primary nucleation: ■+■→□□ (14b)

secondary nucleation: ■+■+□□ · · ·□→□□+□□ · · ·□ (14c)

aggregation: ■+□□ · · ·□→□□ · · ·□□ (14d)

depolimerisation: □□ · · ·□□→□□ · · ·□+■ (14e)

Moreover, cells also have clearance mechanisms that remove unnecessary healthy

and pathological species, limiting the formation of aggregates and preventing, or at

least delaying, the disease.

monomer clearance: ■→ ∅, (15a)

oligomer clearance: □ · · ·□□→ ∅ (15b)

Thompson et al. [8] demonstrated that assuming the clearance rate λ is size inde-

pendent (i.e. monomers and oligomers of any size are eliminated at the same rate)
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and close to a critical value λcrit, the dynamics at the local level takes the form of a

transcritical bifurcation

dp(t)

dt
= −(λ− λcrit)p(t)− αp(t)2, (16)

where p��∈[0, 1], but it still has no units. Unlike for the Fisher-KPP, the healthy state

(p∗ = 0) is stable if λ > λcrit, solving the issue of having only one stable critical point

corresponding to the diseased state. However, it loses stability as λ < λcrit and the

toxic state becomes the only stable fixed point. We can now take eq. (16) to represent

the local reaction term of eq. (2a).

Finally, it is also known that the build-up of toxic τP can lead to the impairment

of clearance mechanisms. To take this into account, we augment the system to include

a deterioration of clearance at each node λi towards a minimum value λ∞ with a

first-order rate law [4],

dpi(t)

dt
= −ρ

N∑
j=1

Lijpj(t)− (λi(t)− λcrit)pi(t)− αpi(t)
2, i = 1, 2, ..., N, (17a)

dλi(t)

dt
= −βpi(t)(λi(t)− λ∞), i = 1, 2, ..., N, (17b)

where β is the node vulnerability.

5.2. Results and Discussion

5.2.1 Single Node Dynamics

If the initial conditions are the same at each node (i.e. pi,0 = p0, λi,0 = λ0) the system

eqs. (17a) and (17b) is equivalent to that of a single node

dp(t)

dt
= −(λ(t)− λcrit)p(t)− αp(t)2, (18a)

dλ(t)

dt
= −βp(t)(λ(t)− λ∞). (18b)

This system has two fixed points (p∗, λ∗) = ((λcrit − λ∞)/α, λ∞), (0, λ) which,

respectively, are unconditionally stable and conditionally stable (only for λ > λcrit).

These fixed points correspond to a diseased node when ((λcrit − λ∞)/α, λ∞), a suscep-

tible node when (0, λ) and λ < λcrit, and a healthy node when (0, λ) and λ > λcrit.
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Fig. 4: Response of a healthy node (p = 0, λ > λcrit), to an increase ∆p in τP
concentration. Equations (18a) and (18b) were integrated using explicit Euler. The
dotted grey line marks λcrit. Blue lines represent ∆p < pcrit, green lines represent
∆p > pcrit, and the red line represents ∆p = pcrit. The parameters used in these
simulations are given in table 1.

Susceptible and healthy nodes differ in their reaction to an increase ∆p in toxic τP

concentration. On one hand, susceptible nodes will invariantly evolve to the diseased

state. Meanwhile, for healthy nodes the clearance will be reduced but, depending on

the toxic load ∆p, they will evolve to a healthy (∆p < pcrit), susceptible (∆p = pcrit),

or diseased (∆p > pcrit) state. This is shown in fig. 4 and an analytical expression for

pcrit is derived in [4]. Similarly, diseased nodes react to a decrease −∆p in toxic τP by

increasing p back to the stable state.

Hence, looking at eq. (17a), we see that, at the network level, as soon as there

is one diseased node present, the whole brain is fated to become infected. That is

because toxic τP seeds will be incubated at this node and diffused to its healthy

neighbours until their clearance is reduced below λcrit and they transition to a diseased

state. Then, a brain is healthy if all its nodes are healthy, susceptible as soon as one

node is susceptible, and diseased as soon as one node is diseased.

5.2.2 Network Dynamics

In this section, we move from a single node to a star graph and explore the effect

of diffusivity and network connectivity on the critical toxic seeding value pcrit of the

central node (i.e. ∆p needed to reach the state (0, λcrit)). To vary the diffusivity of

the system we modify ρ and to vary the network connectivity we change the number

of neighbours.
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ρ [yr−1] # neighbours

Fig. 5: Effect of diffusivity and network-connectivity on the critical toxic seeding
pcrit. Equations (17a) and (17b) were integrated using explicit Euler. Dots represent
pcrit of each trajectory. The systems considered were a node with 40 neighbours and a
varying ρ (left) and a node with a varying number of neighbours and a fixed ρ = 0.01
yr−1(right). The rest of the parameters used in these simulations are given in table 1.
The initial conditions were set to be pi(0) = 0 and λi(0) = 2.0 yr−1 in all nodes except
the central node for which pi(0) = ∆p.

Figure 4 (b)-(c) shows that, as diffusivity and connectivity increase, the critical

toxic seeding is larger. These results suggest that enhanced diffusivity and network con-

nectivity may protect the brain from disease by distributing the burden of eliminating

high quantities of toxic τP between neighbours [4].

5.2.3 Disease Dynamics

Finally, we will explore the effect of clearance on the disease progression at the organ

level. For these simulations, we initially set clearance to be λi(t) = λ0 at all nodes.

Figure 6 shows that, as λ0 increases, the disease is delayed and eventually prevented

when λi,0 > λcrit. At λ0 = λcrit, only braak I evolves to the fully diseased state in the

span of 100 years. The other brain regions get infected but at a much slower timescale

which is imperceptible in these plots.

5.3. Conclusion

This model is a good improvement from the FKPP for it is not only able to recover

the biomarker curves of a diseased brain, but it is also able to capture intermediate

healthy and susceptible equilibrium states. However, this model is limited as it does

not account for atrophy beyond the deterioration of clearance.
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yr−1 yr−1

yr−1 yr−1

Fig. 6: Effect of clearance on disease progression. Equations (17a) and (17b) were
integrated using explicit Euler. The parameters used in these simulations are given in
table 1. For these values concentration of toxic τP saturates at p∗ = (λcrit − λ∞)/α ≃
0.338. The initial conditions were set to eq. (10) and λi(0) = λ0.

6 Brain Atrophy

6.1. Model

We will now augment the model developed in the previous section to account for brain

atrophy in the form of deterioration of the axonal pathways and volume loss. As a

first step towards this goal, we augment the system of equations eqs. (17a) and (17b)

by adding a first-order equation for damage evolution

dqi(t)

dt
= βpi(t)(1− qi(t)), i = 1, 2, ..., N, (19a)

where damage is a dimensionless quantity q ∈ [0, 1]. We take the same node vulnera-

bility β as for clearance for there is no reason to believe it would be different. This

damage can then be used to modify the connectivity between nodes as follows

L̃ij(t) = Lij max

{
e2κ−qi(t)−qj(t) − 1

e2κ − 1
, 0

}
, (19b)

where κ ∈ [0, 1] is a constant that must be specified. When qi + qj ≥ 2κ the conexion

between regions i and j is completelly broken (i.e. L̃ij = 0). Hence, κ effectively sets

the cut-off damage above which axonal pathways do not allow transport of toxic τP.
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Next, we further extend our model by adding an equation for volume loss

dvi(t)

dt
= −(a+ γpi(t))vi(t), i = 1, 2, ..., N, (19c)

where a is the rate of volume loss due to normal ageing, and γ is the rate of volume

loss due to the build-up of toxic τP. Note that this makes eq. (7) time dependent. The

brain undergoes a normal volume loss of 5% per decade past the age of 40 [10]. Hence

we take a = 0.005 yr−1 and choose to set γ to the same value. To take this variation

of volume into account in eq. (17a), from the definition of concentration pi ∝ v−1
i , we

must add an extra −pi(t)
vi(t)

dvi
dt
.

Taking the deterioration of axonal pathways and volume loss into account,

dpi(t)

dt
= −ρ

N∑
j=1

L̃ij(t)pj(t)−(λi−λcrit)pi(t)−αpi(t)
2+(a+γpi(t))pi(t), i = 1, 2, ..., N.

(19d)

Note that this addition changes the fixed points and now, in a similar way to what

was discussed in section 5.2.1, we have (p∗, λ∗) = ((λcrit − λ∞ + a)/(α− γ), λ∞), (0, λ).

Altogether, our model consists of eqs. (17b) and (19a) to (19d).

6.2. Results and Discussion

6.2.1 Deterioration of Axonal Pathways

We start by considering atrophy as the deterioration of the axonal pathways solely

(a = γ = 0 yr−1). Figure 7 shows how, as toxic τP accumulates, the entries of the

laplacian decrease, thus decreasing the diffusivity and connectivity of the network,

and — in line with what was demonstrated in section 5.2.2 — delaying the spread of

the disease. As κ decreases, entries tend to zero faster and the disease spreads slower.

Therefore, the deterioration of axonal pathways can delay the progression of AD in

terms of the accumulation of toxic τP. However, it is positively correlated with other

aspects of AD-like cognitive impairment [6].

6.2.2 Loss of Volume

Now, we consider atrophy as the loss of volume solely (qi(t) = 0). Figure 3 shows

how, as toxic τP accumulates, the volume of all regions of the brain decreases, thus
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κ = 0.5

κ = 0.05

Fig. 7: Deterioration of axonal pathways as the disease evolves. Equations (17b)
and (19a) to (19d) were integrated using explicit Euler. Plots show the percentage of
the original laplacian entries left at three different times and the biomarker curves
with damage (solid lines) and without damage (qi(t) = 0, dashed lines). a and γ were
set to zero and the rest of the parameters used in these simulations are given in table 1.
The initial conditions were set to eq. (10) and λi(0) = 0.25 yr−1.

Fig. 8: Volume loss as the disease evolves. Equations (17b) and (19a) to (19d) were
integrated using explicit Euler. Plots show the biomarker curves with (a = γ = 0.005
yr−1, solid lines) and without volume loss (a = γ = 0 yr−1, dashed lines). The rest of
the parameters used in these simulations are given in table 1. The initial conditions
were set to eq. (10) and λi(0) = 0.25 yr−1.
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increasing the concentration p at all nodes and speeding up the spread of the disease.

Moreover, our model can recover [11]’s observations, where the entorhinal cortex and

the hippocampus are the first areas affected by atrophy.

Note that volume can also be used as a reliable biomarker of AD progression.

Unlike the concentration of τP, which no current technology can directly quantify

non-invasively in humans, volume loss can be measured via imaging. Hence, we have

developed a way in which theoretical model results can be compared to in-vivo data.

6.3. Conclusion

Our final model is a very complete description of the spread of AD which (1) recovers

the clinically observed biomarker curves for both the concentration of τP and volume

loss, (2) captures intermediate healthy and susceptible equilibrium states, and (3)

considers brain atrophy in terms of clearance, axonal pathways, and volume.

However, there is still room for improvement. For instance, this model does not

capture the effects of the accumulation of Aβ nor protein-protein interactions between

Aβ and τP. There is increasing evidence [2] that these interactions play a crucial role

in AD and future work should be aimed at expanding models with protein-protein

interactions (e.g. [2]’s heterodimer model) to account for brain atrophy in the form of

impairment of clearance, deterioration of axonal pathways and volume loss.

7 Final Conclusion

In this project, we have undergone a comprehensive exploration of Alzheimer’s Disease

through the development of network reaction-diffusion models. Using the Fisher-

KPP model as an entry point, we saw how even the simplest models can recover

the shape, staging and timescales of AD’s biomarker curves. We then moved to a

more complete description of protein dynamics which included nucleation, aggregation,

depolymerisation and clearance mechanisms, as well as clearance deterioration due to

the build-up of toxic τP. We gave an in-depth analysis of its behaviour at the single

node, network, and organ levels. Finally, we augmented this model to consider brain

atrophy and explored how axonal pathway degeneration and volume loss impact the

evolution of Alzheimer’s Disease. Future work should be aimed at extending in a

similar fashion models with protein-protein interactions.
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