
Numerical Solution of Differential Equations Using Neural

Networks.

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD

Case Study in Scientific Computing

Candidate number: 1077723

Date: September 11, 2024

1 Introduction

Differential equations (DEs) are the basis of scientific modelling. Even though most

DEs lack an analytical solution, they can be approximated using classical numerical

methods — e.g. finite differences or finite elements — based on the discretisation of

the domain. However, mesh generation for these techniques gets increasingly expensive

as the domain gets more complicated or the target function less smooth, and the

accumulated error can become significant.

In this project, we explore an alternative to conventional techniques based on

neural networks (NNs) [1, 2]. This method embeds the DE and its boundary conditions

(BCs) into the loss function of the net. It does not require space to be discretised (i.e.

it is mesh-free), being a potential solution to the curse of dimensionality [2].

With this purpose in mind, in section 2, we give a brief general introduction to NNs,

how they can be built to solve DEs, and how to use automatic differentiation (AD) to

differentiate the NN’s outputs and loss. In section 3, we discuss how NNs can solve

ordinary differential equations (ODEs). Using as examples a 1D Poisson equation and

a 1D Helmholtz equation, we explore how the method for setting the BCs, the width

and depth of the net, and the number of grid points affects the training of the NN.

We further show how the techniques used to solve these linear ODEs can be extended

to solve systems of ODEs, and non-linear ODEs. In section 4, we demonstrate the

potential of NNs by solving a 2D (elliptic) Poisson equation, a 1D and 2D (parabolic)

Burger’s equation and a 1D (complex-valued parabolic) Schrodinger’s equation. We

conclude the project in section 5. Throughout this report, we will illustrate how NNs

can be implemented by including Python code snippets using PyTorch [3].

2 Theory

2.1. Neural networks (NNs)

Consider feature variables x ∈ Rm which map to a target variable y ∈ Rk. NNs aim to

learn, from a set of training points T = {(x(j),y(j))}Jj=1 specifying the desired output

y(j) for each x(j), what would the y of an unseen x��∈{x(j)}Jj=1 be. There are many

types of NNs like the convolutional or recurrent NNs. We will consider its simplest

form, the feed-forward neural network (FNN), which is sufficient for most DEs [1, 2].

1

To make predictions, FNNs take an input x = h(1) and feed it into a net of nodes

(e.g. fig. 1) where the information flows forwards (i.e. without cycles) to get an output

ŷ = h(N). The architecture of a FNN is usually specified by its width (maximum

number of nodes per layer) and depth (number of layers). Each node applies an affine

transformation followed by a nonlinear action, so at layer l + 1 the node values are

h(l+1) = Φl(W
(l)h(l) + b(l)) for l = 1, 2, ..., N − 1, (1)

where W (l) ∈ Rnl+1×nl and its entries w
(l)
i,j are the weights, b(l) ∈ Rnl+1 is the bias, and

Φl(·) is a nonlinear activation applied in element-wise fashion to the vector arguments

[4]. Hence, mathematically, FNN can be thought of as a compositional function.

To learn the parameters θ := {W (l), b(l)}N−1
l=1 that will minimise the error between

ŷ(x|θ) and y(x), NNs minimise a loss function L(θ|T), which is the average over all

training data T of a point-wise loss l(x(j),y(j)|θ). That is,

L(θ|T) = 1

J

J∑
j=1

l(x(j),y(j)|θ). (2)

On PyTorch a FNN with the same Φl on all layers except the last is

class NeuralNetwork(torch.nn.Module):

def __init__(self, layers, activation=torch.nn.Sigmoid):

super().__init__()

self.depth = len(layers) - 1 # set depth of the network

self.activation = activation # set activation function

layer_lst = []

for i in range(self.depth - 1): # build architecture

layer_lst.append(torch.nn.Linear(layers[i], layers[i + 1]))

layer_lst.append(self.activation())

layer_lst.append(torch.nn.Linear(layers[-2], layers[-1]))

self.net = torch. nn.Sequential(*layer_lst) # set architecture

def forward(self, x): # define forward pass of the neural network

return self.net(x)

Then, ŷ(x|θ) is obtained by

nn = NeuralNetwork(layers)

y = nn(x)

2

Input
layer

Hidden layers Output
layer

Loss Optimise

t

x1

x2

tx0x0xm̃

...

h
(2)
1

h
(2)
2

h
(2)
n2

...

h
(3)
1

h
(3)
2

h
(3)
n3

...

h
(4)
1

h
(4)
2

h
(4)
n4

...
ŷ

LΩ(θ|T) = 1
|Ω|
∑

(t,x)i∈Ω(N ŷ(ti,xi|θ)− f(ti,xi))
2

Loss Governing Equation

LδΩj
(θ|T) = β

|δΩj |
∑

xi∈δΩj
(Bj ŷ(ti,xi|θ)− g(ti,xi))

2

Loss Boundary Conditions

LΓj
(θ|T) = γ

|Γ|
∑

ti=0(Cj ŷ(ti,xi|θ)− h(ti,xi))
2

Loss Initial Conditions

L(θ|T)

Total
Loss

θ

Fig. 1: Schematic of an FNN with three hidden layers approximating a DE. The
input variables (t,x) = (t, x1, x2, ..., xm̃) ∈ Rm+1 map into the output variable ŷ ∈ R.

2.2. Neural networks for differential equations (DEs)

Consider solving the following DE for the function y(t,x):

N y(t,x) = f(t,x) in Ω ⊂ Rm, (3a)

Bjy(t,x) = gj(t,x) on δΩj ⊂ δΩ ⊂ Rm−1, (3b)

Cjy(0,x) = hj(x) in Ω ⊂ Rm, (3c)

where N , Bj, and Cj are differential operators defining the DE, the jth boundary

condition (BCs), and the jth initial condition (ICs), respectively. The FNN (fig. 1)

will approximate y(t,x) as ŷ(t,x|θ). To convert this constrained optimisation problem

into an unconstrained problem we can use a loss function (or penalty function)

L(θ|T) = LΩ(θ|T) +
∑
j

LδΩj
(θ|T) +

∑
j

LΓj
(θ|T), (4a)

where LΩ is the loss at the points inside the domain

LΩ(θ|T) =
1

|Ω|
∑

(t,x)i∈Ω

(N ŷ(ti,xi|θ)− f(ti,xi))
2, (4b)

LδΩj
is the loss at the jth boundary

LδΩj
(θ|T) = β

|δΩj|
∑

xi∈δΩj

(Bj ŷ(ti,xi|θ)− g(ti,xi))
2 , (4c)

and LΓj
is the loss of the jth initial condition

LΓj
(θ|T) = γ

|Γ|
∑
ti=0

(Cj ŷ(ti,xi|θ)− h(ti,xi))
2 . (4d)

3

Here, |Ω|, |δΩj|, and |Γ| are the number of points inside the domain, at the jth

boundary, and at the initial time, respectively. Moreover, β and γ are the weights

given to the boundary and initial constraints, and they must be carefully chosen to

balance the accuracy of the BCs, ICs, and DE.

On PyTorch — having defined the problem-specific functions to evaluate the DE,

BCs, and ICs — the loss function for a one-dimensional DE with one BC and one IC

is obtained as follows:

def loss_function(t,x,Ny,f,By,g,Cy,h,beta,gamma):

Loss domain

t_N, x_N = select the points (t, x) inside the domain

Ny_pred = Ny(t_N, x_N) # net approximation of the DE

f_true = f(t_N, x_N) # true RHS of DE

loss_PDE = torch.mean((Ny_pred - f_true)**2)

Loss BC

t_B = select the points (t, x) at the boundary

By_pred = By(t_B) # net approximation of the BC

g_true = g(t_B) # true RHS of BC

loss_BC = beta * torch.mean((Ny_pred - f_true)**2)

Loss IC

x_C = select the points (t, x) at the initial time

Cy_pred = Cy(x_C) # net approximation of the IC

h_true = h(x_C) # true RHS of IC

loss_IC = gamma * torch.mean((Cy_pred - h_true)**2)

Total loss

return loss_PDE + loss_BC + loss_IC

Note that, unlike classical numerical methods, NNs do not guarantee convergence

to a unique solution [2] because they are solving a non-convex optimization problem,

which in general might have many local minima.

2.3. Automatic differentiation (AD)

Since N and B are differential operators, to evaluate them we will need to calculate

derivatives of ŷ(t,x|θ) with respect to t and xi. This is done by applying the AD tech-

nique, which uses the fact that the FNN represents a compositional function. It consists

of applying the chain rule to each of the paths Pr =
{
t/xi, h

(2)
r2 , h

(3)
r3 , ..., h

(N−1)
rN−1 , ŷ

}
,

4

connecting t/xi to ŷ(t,x|θ), and summing up. Here, h
(l)
rl is the node at layer l chosen

for path r. In fig. 1, these paths are all the sets of arrows we can follow to get from

t/xi to ŷ(t,x|θ). Hence,

∂ŷ(t,x|θ)
∂t

=
R∑

r=1

[
∂ŷ(t,x|θ)
∂h

(N−1)
rN−1

N−2∏
n=2

(
∂h

(n+1)
rn+1

∂h
(n)
rn

)
h
(2)
r2

∂t

]
, (5a)

∂ŷ(t,x|θ)
∂xi

=
R∑

r=1

[
∂ŷ(t,x|θ)
∂h

(N−1)
rN−1

N−2∏
n=2

(
∂h

(n+1)
rn+1

∂h
(n)
rn

)
h
(2)
r2

∂xi

]
, (5b)

where R is the number of possible paths. Here, the expression within the brackets is

the chain rule applied to each Pr, and all partial derivatives on the right-hand-side

can be easily calculated using eq. (1). This can be similarly extended to higher-order

derivatives. Hence, for the NN to work we must ensure Φl is differentiable at least

m+ 1 times before it becomes zero everywhere, where m is the order of the DE.

AD in PyTorch for a one-dimensional DE is done as follows

y = nn(torch.cat([t, x], dim=1)) # outputs of the net

y_t = torch.autograd.grad(y, t, torch.ones_like(y),

create_graph=True)[0] # first derivative in time

y_x = torch.autograd.grad(y, x, torch.ones_like(y),

create_graph=True)[0] # first derivative in space

y_xx = torch.autograd.grad(y_x, x, torch.ones_like(y_x),

create_graph=True)[0] # second derivative in space

Moreover, to minimise L(θ|T), gradient-based optimisers will need to calculate its

derivatives with respect to the weights w
(l)
i,j and biases b

(l)
i . This is done similarly to

eqs. (5a) and (5b), but now paths start at the hidden unit h
(l+1)
i (not at t/xi), i.e.

P̂r =
{
h
(l+1)
i , h

(l+2)
rl+2 , h

(l+3)
rl+3 , ..., h

(N−1)
rN−1 , ŷ

}
.

∂L(θ|T)
∂b

(l)
i

=
∂L(θ|T)

∂ŷ

R̂∑
r=1

[
∂ŷ(t,x|θ)
∂h

(N−1)
rN−1

N−2∏
n=l+1

(
∂h

(n+1)
rn+1

∂h
(n)
rn

)]
h
(l+1)
i

∂b
(l)
i

, (6a)

∂L(θ|T)
∂w

(l)
i,j

=
∂L(θ|T)

∂ŷ

R̂∑
r=1

[
∂ŷ(t,x|θ)
∂h

(N−1)
rN−1

N−2∏
n=l+1

(
∂h

(n+1)
rn+1

∂h
(n)
rn

)]
h
(l+1)
i

∂w
(l)
i,j

, (6b)

where all partial derivatives on the left-hand side can be easily calculated using eqs. (1)

and (4a) to (4d). This instance of AD is called backpropagation.

5

3 Ordinary Differential Equations (ODEs) Numerical Experiments

3.1. Methods

Since there are no restrictions to the nonlinearity and nonconvexity of L(θ|T), we
use gradient-based optimisers to minimise it. In particular, we choose a hybrid

optimisation strategy using the Adam optimiser [5] for an initial number of epochs

followed by L-BFGS [6]. This strategy aims to balance computational efficiency and

accuracy. Adam is a first-order optimiser that offers a highly efficient and inexpensive

way of exploring the loss landscape. However, as the optimisation progresses, it tends

to oscillate around the optimal solution. Then, the quasi-Newton optimiser L-BFGS

is introduced, bringing improved convergence.

We specify the training points to be uniformly spaced throughout the domain and

never change them during the training process, so on Pytorch, the training is

def train(nn,a,b,sample_size,Ny,f,By,g,beta,Adam_iter,LBFGS_iter):

nn.train()

x = torch.linspace(a,b,sample_size,requires_grad=True).unsqueeze(1)

optimiser_Adam = torch.optim.Adam(nn.parameters())

for epoch_Adam in range(Adam_iter): # train with Adam optimiser

loss = loss_function(x,Ny,f,By,g,beta) # loss

optimiser_Adam.zero_grad() # gradients set to zero

loss.backward() # backpropagation

optimiser_Adam.step() # update parameters

optimiser_LBFGS = torch.optim.LBFGS(nn.parameters())

def closure():

loss = loss_function(x,Ny,f,By,g,beta) # loss

optimiser_LBFGS.zero_grad() # gradients set to zero

loss.backward() # backpropagation

return loss

for epoch_LBFGS in range(LBFGS_iter):

optimiser_LBFGS.step(closure) # update parameters

Finally, we choose the sigmoid activation function Φl(z)i = (1 + e−zi)−1, which

squishes a large input space zi ∈ [−∞,∞] into a small output space Φl(z)i ∈ [0, 1].

Consequently, a large change in z will cause a small change in Φl(z), and
∂Φl(z)
∂zi

tends

to 0 as zi tends to ±∞. We will return to this topic when we look at NN depth.

6

In the following subsection, we will explore how the method for setting the BCs,

the width and depth of the net, and the number of grid points affect the training of

the NN when solving an ODE. We do so in terms of the convergence of the loss, the

accuracy of the approximation, and the time taken for training to be completed. To

quantify the accuracy, we calculate the average point-wise error of the result ŷ(x|θ)
with respect to the exact solution y(x) at 100 points,

error =
1

100

100∑
i

|ŷ(x(i)|θ)− y(x(i))|
|y(x(i))|

. (7)

3.2. Example 1: second-order linear ODEs with constant coefficients

Consider solving the second-order linear ODE

N y(x) = c2
d2y(x)

dx
+ c1

dy(x)

dx
+ c0y(x) = f(x) in a < x < b, (8a)

Bay(a) = ya, Bby(b) = yb, (8b)

where ci ∈ R. Then N y(x) can be evaluated as

def Ny(nn,x,c0,c1,c2):

y = nn(x) # outputs of the net

y_x = torch.autograd.grad(y, x, grad_outputs=torch.ones_like(y),

create_graph=True)[0] # first derivative

y_xx = torch.autograd.grad(y_x, x, grad_outputs=torch.ones_like(y_x),

create_graph=True)[0] # second derivative

return c2*y_xx + c1*y_x + c0*y

and Dirichlet/Von Neumann BCs as

def By(nn,x,BCs): # where x = [a, ..., b]

y.nn(x)

if BCs == "dirichlet": # Set Dirichlet BCs

return torch.tensor([y[0], y[-1]])

elif BCs == "neumann": # Set Neumann BCs

y_x = torch.autograd.grad(y, x, grad_outputs=torch.ones_like(y),

create_graph=True)[0]

return torch.tensor([y_x[0], y_x[-1]])

else: raise ValueError("Invalid BCs")

7

In the upcoming numerical experiments, we will try to approximate a 1D Poisson

equation with Dirichlet BCs

d2y(x)

dx
= −2 in 0 < x < 1, y(0) = y(1) = 1, (9)

and exact solution y(x) = 1+ x(1− x), and a 1D Helmholtz equation with mixed BCs

d2y(x)

dx
+ y(x) = 0 in − π < x < π, y(−π) = −1,

dy(π)

dx
= 1. (10)

and exact solution y(x) = cos(x)− sin(x).

3.2.1 Boundary conditions

The most common approach to applying the BCs is the one described until now, where

the boundary constraints are added to the loss function (eq. (4c)) with a certain weight

β. However, there are alternative approaches, like post-processing the net outputs to

automatically satisfy the BCs. For Dirichlet BCs (eq. (9)) a way of doing so is

y(x) = ŷ(x) +
(b− x)

(b− a)
(ya − ŷ(a)) +

(x− a)

(b− a)
(yb − ŷ(b)), (11)

so y(a) = ya and y(b) = yb automatically. Similarly for mixed BCs (eq. (10))

y(x) = ŷ(x) + (ya − ŷ(a)) + (x− a)

(
yb −

∂ŷ(b)

∂x

)
, (12)

so y(a) = ya and ∂y(b)
∂x

= yb automatically. Note that the boundary terms in eq. (4c)

for y(x) and y(x) vanish and we no longer need to define a β.

Figure 2 compares the classical approach with different values of β and the post-

processing method. For eq. (9), both are similar in terms of accuracy and speed.

However, for eq. (10), the postprocessing approach faced some convergence issues that

forced us to reduce the learning rate of Adam and abandon L-BFGS. As a result, it

converges to a local minimum that is not exactly the correct solution. Thus, we will

use the first method for the rest of the section. While any choice of β between 1 and

70 gives similar accuracy, larger values increase the training time and the fluctuations

in the convergence. Hence, we choose to set β = 1.

8

Fig. 2: Effect of β on the training of the net. The NN consisted of one hidden layer
with five nodes. The problems learnt were eq. (9) (top row) and eq. (10) (bottom row).
The results of the classical (solid lines) and post-processing (dashed lines) methods are
the average of 20 trial runs. These are verified against the exact solutions (dotted-black
lines). The error bars correspond to one standard deviation. The number of grid
points was 100. The optimiser switched from Adam (learning rate of 0.02) to L-BFGS
at epoch 500 except for y(x), for which we only used Adam (learning rate of 0.005).

3.2.2 Width and Depth

Width. Figure 3 shows that increasing the number of nodes per hidden layer

improves the convergence and accuracy of the NN. This is equivalent to increasing

the number of parameters θ. At first, θ are so few that the NN does not have enough

expressivity to learn the function, and convergence and accuracy improve significantly

with each node added. However, when the NN has enough representational power,

increasing the width does not substantially improve the results. It is also clear that the

number of nodes needed to reach enough expressivity increases with the complexity of

the problem. In this case, around 5 nodes for eq. (9) and around 9 for eq. (10). A

trend between the width and the training time is unclear from these graphs.

Depth. Figure 4 shows that increasing the number of hidden layers of the NN makes

the training time longer, and can improve but generally worsens convergence and

accuracy. Recall from section 3.1 that the derivatives of the sigmoid function with

respect to its input can become very small. This is not an issue with a few layers, but

9

Fig. 3: Effect of the number of nodes per hidden layer (width) on the training of
the net. The NN consisted of one hidden layer with a varying number of nodes. The
problems learnt were eq. (9) (top row) and eq. (10) (bottom row). The results for
each number of nodes (solid lines) are the average of 20 trial runs. These are verified
against the exact solutions (dotted-black lines). The error bars correspond to one
standard deviation. The number of grid points was 100 and β = 1. The optimiser
switched from Adam (learning rate of 0.02) to L-BFGS at epoch 500.

as depth increases, eqs. (6a) and (6b) obtained via backpropagation become sums of

products of very small derivatives. This means that ∂L(θ|T)

∂b
(L)
i

and ∂L(θ|T)

∂w
(L)
i,j

will be very

small for the first layers and the weights and biases of these initial layers will not be

updated efficiently leading to overall network inaccuracy. Hence, as soon as the NN is

expressive enough to learn the function, increasing the number of hidden layers only

leads to a higher risk of vanishing gradients, hindering the training of the NN.

Discussion. This section shows that a small network consisting of a few layers and

nodes is sufficient to approximate an ODE. In fact, we have seen that increasing θ

can only improve convergence and efficiency until a certain point dependent on the

complexity of the problem. Moreover, if θ is increased by making the NN deeper, it

can quickly worsen the approximation. These results align with the general view that

wider and shallower networks work better for these problems.

10

Fig. 4: Effect of the number of hidden layers (depth) on the training of the net. The
NN consisted of five nodes per hidden layer and a varying number of layers. The
problems learnt were eq. (9) (top row) and eq. (10) (bottom row). The results for
each number of layers (solid lines) are the average of 20 trial runs. These are verified
against the exact solutions (dotted-black lines). The error bars correspond to one
standard deviation. The number of grid points was 100 and β = 1. The optimiser
switched from Adam (learning rate of 0.02) to L-BFGS at epoch 500.

3.2.3 Grid points

Figure 5 shows that increasing the number of grid points leads to more accurate results

at the expense of slower training. Note that the apparent worsening of the convergence

does not result from a poorer approximation but from the loss having to be minimised

at a larger number of grid points. Hence, this is an instance where the values of the

loss misrepresent the accuracy of the final solution, and we should instead refer to the

error to compare solutions. Nonetheless, the behaviour of the loss is still relevant to

know whether the NN converges (the loss decreases) or not (the loss remains flat).

11

Fig. 5: Effect of the number of grid points on the training of the net. The NN
consisted of one hidden layer with ten nodes. The problems learnt were eq. (9) (top
row) and eq. (10) (bottom row). The results for each number of layers (solid lines) is
the average of 20 trial runs. These are verified against the exact solutions (dotted-black
lines). We set β = 1. The optimiser switched from Adam (learning rate of 0.02) to
L-BFGS at epoch 500.

3.3. Example 2: linear system of second-order ODEs

The previous techniques can be easily extended to a system of linear ODEs

N (y) =

c
(1)
2 (x)d

2y1(x)
dx

+ c
(1)
1 (x)dy1(x)

dx
+ c

(1)
0 (x)y1(x) = f1(x, y2)

c
(2)
2 (x)d

2y2(x)
dx

+ c
(2)
1 (x)dy2(x)

dx
+ c

(2)
0 (x)y2(x) = f2(x, y1)

in a < x < b,

(13a)

B1ay1(a) = y1a, B1by1(b) = y1b, B2ay2(a) = y2a, B2by2(b) = y2b. (13b)

where ci(x) are differentiable functions. The PyTorch implementation is exacly the

same as before but with an extra dimension in the output of the net (ŷ = (y1, y2)), Ny

(N y1 and N y2), and By ([B1ay1(a),B1by1(b)] and [B2ay1(a),B1by1(b)]). Moreover, the

loss is now the sum of the losses for y1 and y2.

Figure 6 shows the results of approximating the example problem
d2y1(x)
dx2 + xy1(x)− y2(x) = 2 + x, y1(0) = y1(1) = 1,

−d2y2(x)
dx2 + y2(x) = 6x− 2 + x2(1− x), y2(0) = y2(1) = 0.

(14)

12

Fig. 6: NN approximation of eq. (14). The NN consisted of one hidden layer with
ten nodes. The result of one run is verified against the exact solutions (black lines).
The number of grid points was 100 and β = 1. The optimiser switched from Adam
(learning rate of 0.02) to L-BFGS at epoch 500.

3.4. Example 3: second-order non-linear ODEs

Again, the previous techniques can be easily extended to solve non-linear ODEs. In

this case, we must change the function Ny to be the respective non-linear left-hand

side. Figure 7 shows the results of trying to approximate the problem

d2y(x)

dx2
−
(
dy(x)

dx

)2

y(x) = 10 cos(10x2)e5x
2

in x ∈ [−1, 1], (15)

with Dirichlet BCs (y(−1) = y(1) = 0) and mixed BCs (y(−1) = ∂y(1)
∂x

= 0). Since the

problem was harder, we required more width, depth, and trial point density to solve

it, and the solution was not as accurate as before.

Fig. 7: NN approximation of eq. (15). The NN consisted of three hidden layers
with 20 nodes. The results of one run for Dirichlet (green) and mixed (blue) BCs are
verified against the exact solutions (black lines). The number of grid points was 250
and β = 750. The optimiser switched from Adam (learning rate of 0.02) to L-BFGS
at epoch 1500 and 1000, respectively.

13

4 Partial Differential Equations (PDEs) Numerical Experiments

4.1. Methods

For PDEs, we use a slightly different training strategy where, instead of switching to

using L-BFGS after a certain amount of Adam epochs, we reduce the learning rate λk

of the Adam optimiser at each iteration k as

λk = κλk−1, (16)

where κ ∈ [0, 1]. This strategy aims to keep the oscillations of this optimiser in check

by reducing its learning rate fast enough. Moreover, we specify different training

points at each optimisation iteration by selecting them randomly throughout the

domain (24/25ths of the points) and boundaries (1/25th of the points).

Since PDEs usually require deeper nets, we choose a hyperbolic-tangent activation

function Φl(z)i =
ezi−e−zi

ezi+e−zi
. This activation function is very similar to the classical

sigmoid function but it squishes the input space zi ∈ [−∞,∞] into a slightly larger

output space Φl(z)i ∈ [−1, 1]. Consequently, its derivatives will be larger than the

sigmoid activation function, reducing the danger of vanishing gradients.

4.2. Example 1: 2D Poisson equation

Consider solving the 2D Poisson equation

−∇2y(x) = f(x) in Ω. (17)

The PyTorch implementation is analogous to that of ODEs but with an extra

dimension in the input of the net (x̂ = (x1, x2)). Additionally, one must watch

the dimensions of the torch arrays, and that they are taking the right points when

evaluating the PDE and BCs.

In particular, consider the specific problem

−∇2y(x1, x2) = 2π2 sin(πx1) sin(πx2) in (x1, x2) ∈ ([0, 1], [0, 1]), (18a)

y(0, x2) = y(1, x2) = 0 on x2 ∈ [0, 1], (18b)

y(x1, 0) = y(x1, 1) = 0 on x1 ∈ [0, 1], (18c)

14

Fig. 8: Solving the 2D Poisson equation. The NN had three hidden layers with 20
nodes each. The result of one run (blue for ŷ, green for y) is verified against the exact
solution (red). The number of training points was 10000, and the Adam optimiser
had λ0 = 0.05, which decayed at each iteration following eq. (16) with κ = 0.995. For
ŷ, β = 200 and the average error was 27.5%. For y, the average error was 0.68%.

with exact solution y(x) = sin(πx1) sin(πx2).

Figure 8 (top row) shows that the biggest contribution to the error comes from the

points at the edges and, if they are not considered, the average error quickly reduces

below 1%. A solution to this problem in the approximation is to post-process ŷ to

automatically satisfy the BCs in a similar way to what was discussed in section 3.2.1.

In the case of this PDE, y would be obtained as follows

y(x1, x2) =ŷ(x1, x2)− (1− x1)ŷ(0, x2)− x1ŷ(1, x2)− (1− x2)ŷ(x, 0)− x2ŷ(x, 1)

+ (1− x1)(1− x2)ŷ(0, 0) + x1(1− x2)ŷ(1, 0)

+ (1− x1)x2ŷ(0, 1) + x1x2ŷ(1, 1). (19)

The results for y(x) are also shown in fig. 8. This post-processing notably reduces the

error at the edges giving an excellent approximation to the problem.

Overall, the loss fluctuates significantly more than with ODEs, reflecting the

increased complexity of the problem and its loss landscape. This complexity makes it

challenging for the optimiser to find the path towards the minimum.

15

4.3. Example 2: Burger’s equation

In this section, we will solve Burger’s equation; a convection-diffusion equation that

arises in various areas of applied mathematics.

4.3.1 One-dimensional Burger’s equation

In one spatial dimension, this equation is

∂y(t, x)

∂t
+ y(t, x)

∂y(t, x)

∂x
− υ

∂2y(t, x)

∂x2
= 0 in Ω. (20)

where υ is a parameter we refer to as viscosity. Classical numerical methods struggle

to approximate this equation for small values of υ as they can lead to shock formation.

We will examine the specific problem

∂y(t, x)

∂t
+ y(t, x)

∂y(t, x)

∂x
− 0.01

π

∂2y(t, x)

∂x2
= 0 in (t, x) ∈ ([0, 1], [−1, 1]), (21a)

y(t,−1) = y(t, 1) = 0, in t ∈ [0, 1], (21b)

y(0, x) = − sin(πx) in x ∈ [−1, 1], (21c)

with exact solution

y(t, x) =
−
∫∞
−∞ sin π(x− η) exp

[
− cos π(x−η)

2πυ
− η2

4υt

]
dη∫∞

−∞ exp
[
− cos π(x−η)

2πυ
− η2

4υt

]
dη

, (22)

which can solved numerically using Hermite integration [7]. This solution becomes

a sawtooth wave at x = 0 at t ≃ π, reaching a maximum value for the gradient at

t ≃ 0.5 [1, 7]. Hence, to approximate this problem, we chose to force at least 1/3rd

of the trial points in the domain to be within x ∈ [−0.25, 0.25]. Figure 9 shows very

reasonable results where, regardless of our sampling method, the biggest contribution

to the error still comes from the sawtooth crest.

16

Fig. 9: Solving the 1D Burger’s equation. The NN consisted of eight hidden layers
with 20 nodes. The result of one run (blue) is verified against the data provided by [1]
(red). The number of training points was 10000, β = γ = 10, and the Adam optimiser
had λ0 = 0.05, which decayed at each iteration following eq. (16) with κ = 0.99. The
average error was 16.7%.

4.3.2 Two-dimensional Burger’s equation

In two spatial dimensions, this equation is
∂y1
∂t

+ y1
∂y1
∂x1

+ y2
∂y1
∂x2

= 1
Re

(
∂2y1
∂x2

1
+ ∂2y1

∂x2
2

)
∂y2
∂t

+ y1
∂y2
∂x1

+ y2
∂y2
∂x2

= 1
Re

(
∂2y2
∂x2

1
+ ∂2y2

∂x2
2

) in Ω, (23)

where we left the (x, t) dependencies implicit for readibility. In the domain (x1, x2) ∈
([0, 1], [0, 1]) this equation admits the solution [8]

ỹ1(x, t) =
3

4
− 1

4 [1 + eRe(4x2−4x1−t)/32]
, ỹ2(x, t) =

3

4
+

1

4 [1 + eRe(4x2−4x1−t)/32]
. (24)

Taking the BCs and ICs from eq. (24) and setting Re = 150 we get the problem
∂y1
∂t

+ y1
∂y1
∂x1

+ y2
∂y1
∂x2

= 1
150

(
∂2y1
∂x2

1
+ ∂2y1

∂x2
2

)
∂y2
∂t

+ y1
∂y2
∂x1

+ y2
∂y2
∂x2

= 1
150

(
∂2y2
∂x2

1
+ ∂2y2

∂x2
2

) in x1, x2, t ∈ [0, 1], (25a)

yi(t, 0, x2) = ỹ1(t, 0, x2), yi(t, 1, x2) = ỹi(t, 1, x2) in x2, t ∈ [0, 1], (25b)

yi(t, x1, 0) = ỹi(t, x1, 0), yi(t, x1, 1) = ỹi(t, x2, 1) in x1, t ∈ [0, 1], (25c)

yi(0, x1, x2) = ỹi(0, x1, x2) in x1, x2 ∈ [0, 1], (25d)

where i = 1, 2. This can be solved using an NN with three inputs x = (t, x1, x2) and

two outputs ŷ = (y1, y2).

Figure 10 shows that, while the NN manages to capture the initial condition, the

17

Fig. 10: Solving the 2D Burger’s equation. The NN consisted of two hidden layers
with 20 nodes. The result of one run (blue for ŷ1, green for ŷ2) is verified against the
exact solution (red). The number of training points was 10000, β = γ = 1, and the
Adam optimiser had λ0 = 0.05, which decayed at each iteration following eq. (16)
with κ = 0.995. The average errors (of ŷ1 and ŷ2 together) were 3.9%, 5.6%, and 6.7%
for t = 0, t = 0.5, and t = 1, respectively.

quality of the solution deteriorates over time, making our results unsatisfactory. The

main reason for our poor approximation lies in the computational cost associated

with performing an exhaustive exploration of the NN hyperparameters — net depth

and width, β, γ, Φi(·), etc. —, the optimiser — Adam, L-BFGS, etc. — and its

hyperparameters — λ0, κ, etc. —, as well as the sampling procedure, which proved

unfeasible. Instead, we tried only a few configurations from which the best one gave

the results shown. In future research, a more thorough inspection should be carried

out, or more sophisticated optimisation and sampling techniques that admit a wider

range of hyperparameters should be used.

18

4.4. Example 3: Derivative nonlinear Schrodinger’s equation

In this section we will solve the derivative nonlinear Schrödinger equation; used in

the study of quantum mechanical systems, especially in space plasma physics and

nonlinear optics. In one spatial dimension, this equation is

∂h(t, x)

∂t
+ i

∂2h(t, x)

∂x2
+

∂(|h|2h)
∂x

= 0, (26)

which gives complex-valued solutions h(t, x). It admits the solution [9]

h̃(t, x) =
4e2i(2t−x)(4i(4t− x)− 1)3

(16(4t− x)2 + 1)2
, (27)

so we consider the problem

∂h(t, x)

∂t
+ i

∂2h(t, x)

∂x2
+

∂(|h|2h)
∂x

= 0 in (t, x) ∈ ([−0.08, 0.08], [−5, 5]), (28a)

h(t,−5) = h̃(t,−5) in t ∈ [−0.08, 0.08], (28b)

h(t, 5) = h̃(t, 5) in t ∈ [−0.08, 0.08], (28c)

h(−0.08, x) = h̃(−0.08, x) in x ∈ [−5, 5]. (28d)

Complex-valued solutions can be decomposed into two real functions h(t, x) = u(t, x)+

iv(t, x). Hence, eq. (28a) is equivalent to solving a system of PDEs∂u
∂t

− ∂2v
∂x2 + (3u2 + v2)∂u

∂x
+ 2vu ∂v

∂x
= 0,

∂v
∂t

+ ∂2u
∂x2 + (3v2 + u2) ∂v

∂x
+ 2vu∂u

∂x
= 0,

(29)

where we left the (t, x) dependencies implicit for readability, and with the respective

BCs corresponding to eqs. (28b) to (28d). This can be solved using a multi-output NN

giving ĥ = [û, v̂] and the results are shown in fig. 11. The NN manages to capture the

points at the edges of the space domain but it has trouble depicting the sharp crest in

the middle, even though we force at least 1/3rd of the trial points in the domain to

be within x ∈ [−1, 1]. This suboptimal approximation arises from similar obstacles to

the ones we faced when solving the 2D Burger’s equation.

19

Fig. 11: Solving the derivative nonlinear Schrödinger equation. The NN consisted of
four hidden layers with 25 nodes. The result of one run (blue for Re[ĥ(t, x)], green for
Im[ĥ(t, x)]) is verified against the exact solution (red). The number of training points
was 10000, β = γ = 10, and the Adam optimiser had λ0 = 0.05, which remained
constant eq. (16). The average error was 176% for Re[ĥ(t, x)] and 70% for Im[ĥ(t, x)].

5 Conclusion

In this project, we have embarked on a comprehensive exploration of using neural

networks (NN) for the numerical solution of differential equations (DEs).

Taking ordinary differential equations (ODEs) as an entry point, we observed that

compact NN architectures are sufficient to approximate a diverse set of problems. In

particular, using as examples the 1D Poisson equation and the 1D Helmholtz equation,

we showed that adhering to the classical method of setting boundary conditions (BCs)

promotes stable convergence, shallow and wide networks are optimal, and increasing

the training point density improves accuracy at the expense of computational efficiency.

Subsequently, we extended the techniques we developed to solve a system of ODEs,

and a non-linear ODE.

Moving into more intricate partial differential equation (PDE) problems, we

initially tackled the 2D Poisson equation, achieving notable performance with a modest

network architecture, especially when using post-processing techniques to enforce BCs.

Our investigation extended to Burger’s equation, where satisfactory solutions were

obtained in 1D but not 2D due to the computational cost of exhaustive hyperparameter

exploration. Finally, we demonstrated attempts to solve the Schrödinger equation,

encountering similar obstacles.

Overall, this project illustrates the basic ideas and techniques of using NN for

approximating DEs. These are sufficient for ODEs and simple PDEs but more

sophisticated optimisation and sampling methods must be used for intricate PDEs.

20

References

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics informed deep learning

(part i): Data-driven solutions of nonlinear partial differential equations”. arXiv

preprint arXiv:1711.10561 (2017).

[2] L. Lu et al. “DeepXDE: A deep learning library for solving differential equations”.

SIAM review 63.1 (2021), pp. 208–228.

[3] A. Paszke et al. “Pytorch: An imperative style, high-performance deep learning

library”. Advances in neural information processing systems 32 (2019).

[4] J. Tanner. Three ingredients of deep learning: LeNet-5, MNIST, and backprop.

Lecture Notes of C6.5 Theories of Deep Learning. Mathematical Institute, Uni-

versity of Oxford, 2024. url: https://courses.maths.ox.ac.uk/pluginfile.

php/94812/mod_resource/content/4/Lecture%201%20Slides.pdf.

[5] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv

preprint arXiv:1412.6980 (2014).

[6] R. H. Byrd et al. “A limited memory algorithm for bound constrained optimiza-

tion”. SIAM Journal on scientific computing 16.5 (1995), pp. 1190–1208.

[7] C. Basdevant et al. “Spectral and finite difference solutions of the Burgers

equation”. Computers & fluids 14.1 (1986), pp. 23–41.

[8] V. Kumar, S. Singh, and M. E. Koksal. “A composite algorithm for numerical

solutions of two-dimensional coupled Burgers’ equations”. Journal of Mathematics

2021 (2021), pp. 1–13.

[9] J. Pu, W. Peng, and Y. Chen. “The data-driven localized wave solutions of the

derivative nonlinear Schrödinger equation by using improved PINN approach”.

Wave Motion 107 (2021), p. 102823.

21

https://courses.maths.ox.ac.uk/pluginfile.php/94812/mod_resource/content/4/Lecture%201%20Slides.pdf
https://courses.maths.ox.ac.uk/pluginfile.php/94812/mod_resource/content/4/Lecture%201%20Slides.pdf

	Introduction
	Theory
	Neural networks (NNs)
	Neural networks for differential equations (DEs)
	Automatic differentiation (AD)

	Ordinary Differential Equations (ODEs) Numerical Experiments
	Methods
	Example 1: second-order linear ODEs with constant coefficients
	Boundary conditions
	Width and Depth
	Grid points

	Example 2: linear system of second-order ODEs
	Example 3: second-order non-linear ODEs

	Partial Differential Equations (PDEs) Numerical Experiments
	Methods
	Example 1: 2D Poisson equation
	Example 2: Burger's equation
	One-dimensional Burger's equation
	Two-dimensional Burger's equation

	Example 3: Derivative nonlinear Schrodinger's equation

	Conclusion

